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Special Topic onSpecial Topic on
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Technologies for Future Wireless CommunicationTechnologies for Future Wireless Communication

The radio communication division of the International 
Telecommunication Union (ITU-R) has recently ad‑
opted Integrated Sensing and Communication (ISAC) 
as a key usage scenario for IMT-2030/6G. The syn‑

ergy of these two functionalities can facilitate a wide array of 
applications such as autonomous driving, smart cities, and in‑
dustrial automation, where simultaneous data transmission 
and environmental sensing are crucial. The rationale of the 
ISAC is that a radio emission can simultaneously convey 
communication data from the transmitter to the receiver and 
extract environmental information from the scattered echoes. 
From a research perspective, ISAC opens new avenues for in‑
novation in signal processing, hardware design, and network 
architecture, facilitating efficient utilization of system spec‑
trum/power/hardware resources and pursuit of mutual ben‑
efits. It is anticipated that ISAC can improve spectral effi‑
ciency, reduce hardware costs, and enhance overall system 
capabilities. Despite the promising advantages above, ISAC 
imposes unique technical challenges on future wireless com‑
munications, including the dual-functional signaling strat‑

egy, the low-complexity sensing and communication recep‑
tion technique, the potential resource management and proto‑
cols tailored for the ISAC network, the information-theoretic 
limits of ISAC, etc.

The call-for-paper of this special issue has attracted high-
quality submissions. After two-round reviews, eight papers 
are presented to address some of the aforementioned chal‑
lenges, and innovative solutions to facilitating the ISAC tech‑
nology are proposed. These papers cover a wide range of top‑
ics, including the signaling design, resource allocation de‑
sign, and reception algorithm design. 

The first paper titled “Kullback-Leibler Divergence Based 
ISAC Constellation and Beamforming Design in the Presence 
of Clutter” presents a novel approach to constellation and 
beamforming design for ISAC systems in the presence of clut‑
ter, employing the Kullback-Leibler divergence (KLD) as the 
unified ISAC performance metric. The constellation design 
problem is solved via the successive convex approximation 
(SCA) technique, while the optimal beamforming in terms of 
sensing KLD is proven to be equivalent to maximizing the 
signal-to-interference-plus-noise ratio (SINR) of echo sig‑
nals. The proposed scheme achieves significant clutter sup‑
pression and higher SINR of echo signals compared with the 
conventional schemes.

The second paper titled “Joint Beamforming Design for 
Dual-Functional Radar-Communication Systems Under Be‑
ampattern Gain Constraints” proposes a joint beamforming 
design to maximize the sum rate of multi-user communica‑
tion while ensuring the beampattern gain at specific sensing 

DOI: 10.12142/ZTECOM.202403001
Citation (Format 1): YUAN J H, FEI Z S, WEI Z Q. Integrated sensing and 
communication (ISAC) technologies for future wireless communication 
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202403001
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angles of interest under the transmit power budget con‑
straint. Utilizing fractional programming and semidefinite re‑
laxation, the study introduces an iterative algorithm that bal‑
ances the performance of both communication and sensing. 
The results demonstrate significant performance gain in 
terms of communication sum rate and radar detection capa‑
bility.

The third paper titled “On Normalized Least Mean Square 
Based Interference Cancellation Algorithm for Integrated 
Sensing and Communication Systems” addresses the co-site 
interference issue for practical ISAC systems by proposing 
an interference cancellation scheme using a normalized least 
mean square (NLMS) algorithm. The scheme reconstructs the 
interference from the local transmitter and cancels it from 
the received signal. The proposed NLMS algorithm effec‑
tively cancels co-site interference and achieves a good bal‑
ance between computational complexity and convergence 
performance.

The fourth paper titled “Trajectory Tracking for MmWave 
Communication Systems via Cooperative Passive Sensing” 
proposes a cooperative passive sensing framework for milli‑
meter wave (mmWave) communication systems and demon‑
strates it in the presence of a mobile signal blocker. A 
gradient-descent-based algorithm is proposed to track the 
blocker’s trajectory, localize the transmitters, and detect the 
potential link blockage jointly. The study demonstrates that 
the system can achieve decimeter-level localization and tra‑
jectory estimation, and predict the blockage time with an er‑
ror of less than 0.1 s.

The fifth paper titled “Integrated Sensing and Communica‑
tion: Who Benefits More?” examines the benefits of 
communication-assisted sensing and sensing-assisted com‑
munication in the context of ISAC. The paper reveals that 
communication-assisted sensing may offer greater develop‑
ment potential due to the wide coverage and cost-
effectiveness of wireless infrastructure in a large range of ap‑
plications. As an instance, the paper presents a channel 
knowledge map (CKM) -assisted beam tracking scheme and 
demonstrates the practical advantages of incorporating CKM 
in enhancing beam tracking accuracy.

The sixth paper titled “Low-Complexity Integrated Super-
Resolution Sensing and Communication with Signal Decima‑
tion and Ambiguity Removal” introduces a low-complexity 
method for super-resolution sensing based on communication 
signals. The proposed scheme performs signal decimation in 
the frequency domain to reduce the computational complex‑
ity and uses the collocated subcarrier data to remove the 
pseudo peaks due to range ambiguity. The proposed scheme 
reduces computational complexity by two orders of magni‑
tude while maintaining the range resolution and unambiguity.

The seventh paper titled “Tensor Decomposition-Based 
Channel Estimation and Sensing for Millimeter Wave MIMO-
OFDM V2I Systems” utilizes tensor decomposition tech‑

niques for channel estimation and sensing in millimeter-
wave MIMO-OFDM vehicle-to-infrastructure (V2I) systems. 
A CANDECOMP/PARAFAC (CP) decomposition-based 
method is proposed for time-varying channel parameter ex‑
traction and then a nonlinear weighted least-square problem 
is proposed to accurately recover the location, heading and 
velocity of vehicles. The proposed methods are effective and 
efficient in time-varying channel estimation as well as ve‑
hicle sensing in mmWave MIMO-OFDM V2I systems.

The eighth paper titled “Sensing and Communication Inte‑
grated Fast Neighbor Discovery for UAV Networks” ad‑
dresses the challenge of fast neighbor discovery in UAV net‑
works through integrated sensing and communication. The 
learning automata (LA) is applied to interact with the envi‑
ronment and continuously adjust the probability to select 
beams to accelerate the convergence speed of ND algorithms. 
The method reduces the neighbor discovery (ND) time by up 
to 32% compared with the conventional scan-based algo‑
rithm (SBA).

To conclude, the papers presented in this special issue un‑
derscore some fundamental challenges of ISAC technology 
for future wireless communication systems. The diverse re‑
search contributions provide valuable insights and innova‑
tive solutions, serving as a valuable resource for researchers, 
practitioners, and students who are interested in ISAC. We 
also hope this special issue inspires further research and col‑
laboration in this exciting and rapidly evolving field. Finally, 
we would like to express our sincere gratitude to all the au‑
thors and reviewers who have contributed to the success of 
this special issue.

Biographies
YUAN Jinhong received his BE and PhD degrees in electronics engineering 
from Beijing Institute of Technology, China in 1991 and 1997, respectively. 
From 1997 to 1999, he was a research fellow at the School of Electrical Engi‑
neering, University of Sydney, Australia. In 2000, he joined the School of 
Electrical Engineering and Telecommunications, The University of New 
South Wales, Australia, where he is currently a professor and the Acting 
Head of the School. He has published two books, five book chapters, over 300 
papers in telecommunications journals and conference proceedings, and 50 
industrial reports. He is a co-inventor of one patent on MIMO systems and 
four patents on low-density-parity-check codes. His current research inter‑
ests include error control coding and information theory, communication 
theory, and wireless communications. He has coauthored four Best Paper 
Awards and one Best Poster Award, including the Best Paper Award from the 
IEEE International Conference on Communications, Kansas City, USA in 
2018, the Best Paper Award from IEEE Wireless Communications and Net‑
working Conference, Cancun, Mexico in 2011, and the Best Paper Award 
from the IEEE International Symposium on Wireless Communications Sys‑
tems, Trondheim, Norway in 2007. He served as the IEEE NSW Chapter 
Chair of Joint Communications/Signal Processing/Ocean Engineering Chapter 
from 2011 to 2014 and served as an associate editor for the IEEE Transac⁃

02



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

YUAN Jinhong, FEI Zesong, WEI Zhiqiang

Integrated Sensing and Communication (ISAC) Technologies for Future Wireless Communication  Special Topic

tions on Communications from 2012 to 2017. He is currently serving as an as‑
sociate editor for the IEEE Transactions on Wireless Communications and 
IEEE Transactions on Communications.
FEI Zesong received his PhD degree in electronic engineering from Beijing 
Institute of Technology (BIT), China in 2004. He is currently a professor with 
the Research Institute of Communication Technology, BIT. His research inter‑
ests are in the area of wireless communications and signal processing, includ‑
ing integrated sensing and communications, physical layer security, UAV 
communications, intelligent reflecting surface, channel coding, and multiple 
access. He has authored or co-authored over 200 journal and conference pa‑
pers, and was the co-receipt of the Best Paper Award in WCSP 2012, China‑
com 2012, Chinacom 2013, and PIMRC 2015. He serves as an associate edi‑
tor for IEEE Open Journal of the Communications Society.
WEI Zhiqiang received his BE degree in information engineering from 
Northwestern Polytechnical University (NPU), China in 2012, and PhD de‑

gree in electrical engineering and telecommunications from The University of 
New South Wales (UNSW), Australia in 2019. From 2019 to 2020, he was a 
postdoctoral research fellow with UNSW. From 2021 to 2022, he was a Hum‑
boldt postdoctoral research fellow with the Institute for Digital Communica‑
tions, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Germany. 
He is currently a professor with the School of Mathematics and Statistics, Xi’
an Jiaotong University, China. He is the founding co-chair (publications) of 
the IEEE ComSoc special interest group on OTFS (OTFS-SIG). He received 
the Best Paper Award at the IEEE ICC 2018 and IEEE WCNC 2023. He was 
the organizer/chair for several workshops and tutorials on related topics of or‑
thogonal time frequency space (OTFS) in IEEE flagship conferences, includ‑
ing IEEE ICC, IEEE WCNC, IEEE VTC, and IEEE ICCC. He also co-
authored the IEEE ComSoc Best Readings on OTFS and Delay Doppler Sig‑
nal Processing. He is now serving as the associate editor of the IEEE Open 
Journal of the Communications Society. His current research interests include 
delay-Doppler communications, resource allocation optimization, and statis‑
tic and array signal processing.

03



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

TANG Shuntian, WANG Xinyi, XIA Fanghao, FEI Zesong 

Special Topic   Kullback-Leibler Divergence Based ISAC Constellation and Beamforming Design in the Presence of Clutter

KullbackKullback--Leibler Divergence Based ISAC Leibler Divergence Based ISAC 
Constellation and Beamforming Design in Constellation and Beamforming Design in 
the Presence of Clutterthe Presence of Clutter

TANG Shuntian, WANG Xinyi, XIA Fanghao, 

FEI Zesong

(Beijing Institute of Technology, Beijing 100081, China)

DOI: 10.12142/ZTECOM.202403002

https://kns.cnki.net/kcms/detail/34.1294.TN.20240816.1728.002.html, 
published online August 19, 2024

Manuscript received: 2024-07-02

Abstract: Integrated sensing and communication (ISAC) is regarded as a pivotal technology for 6G communication. In this paper, we employ 
Kullback-Leibler divergence (KLD) as the unified performance metric for ISAC systems and investigate constellation and beamforming design 
in the presence of clutters. In particular, the constellation design problem is solved via the successive convex approximation (SCA) technique, 
and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio 
(SINR) of echo signals. Numerical results demonstrate the tradeoff between sensing and communication performance under different param‑
eter setups. Additionally, the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of 
echo signals compared with the conventional scheme.
Keywords: constellation design; clutter suppression; integrated sensing and communications; Kullback-Leibler divergence

Citation (Format 1): TIAN S T, WANG X Y, XIA F H, et al. Kullback-Leibler divergence based ISAC constellation and beamforming design in 
the presence of clutter [J]. ZTE Communications, 2024, 22(3): 4–12. DOI: 10.12142/ZTECOM.202403002
Citation (Format 2): S. T. Tian, X. Y. Wang, F. H. Xia, et al., “Kullback-Leibler divergence based ISAC constellation and beamforming design 
in the presence of clutter,” ZTE Communications, vol. 22, no. 3, pp. 4–12, Sept. 2024. doi: 10.12142/ZTECOM.202403002.

1 Introduction

Integrated sensing and communication (ISAC) technology 
is emerging as a pivotal component for 6G communica‑
tions, significantly advancing the development of the In‑
telligent Internet of Everything. By enabling simultaneous 

sensing and communication functionalities on the same spec‑
trum and hardware platform, ISAC enhances both spectrum 
and energy efficiency. This technology not only optimizes re‑
source utilization but also opens the door to new applications 
and services that demand high precision and low latency. As a 
dual-capability technology, ISAC stands as a cornerstone for 
future communication networks, meeting the growing need for 
more efficient and intelligent connectivity solutions in a world 
increasingly defined by the Internet of Everything[1]. Conse‑
quently, ISAC has garnered considerable attention from re‑
searchers in recent years.

As ISAC integrates both communication and sensing func‑

tionalities, the tradeoff between communication and sensing 
performance is crucial in ISAC system design. Current re‑
search regarding the tradeoff between communication and 
sensing performance focuses on their typical performance indi‑
cators, e.g., capacity and bit error rates (BER) for communica‑
tions, and detection probability and the Cramer-Rao bound 
(CRB) for sensing. For instance, in Ref. [2], the authors con‑
sidered a Multi-Input Multi-Output (MIMO) ISAC scenario 
with imperfect knowledge of the channel state information 
(CSI). They designed robust beamforming using the communi‑
cation signal-to-interference-plus-noise ratio (SINR) as a con‑
straint, involving the simultaneous design of both digital and 
analog beamformers. In Ref. [3], the authors collaboratively 
designed transmitting hybrid beamformers and digital receiv‑
ing beamformers for ISAC systems to meet SINR constraints 
for communication users. The simulation results demonstrated 
that the communication requirements were strictly satisfied. 
Similarly, in Ref. [4], the authors aimed to achieve optimal 
beamforming using communication quality-of-service (QoS) as 
a performance metric. Specifically, they considered the Eu‑
clidean distance between the received noise-free signal and 
its closest decision boundary requirements. In addition, the 
authors in Ref. [5] employed intelligent reflecting surfaces 

This work was supported in part by National Key R&D Program of China 
under Grant No. 2021YFB2900200, in part by National Natural Science 
Foundation of China under Grant Nos. U20B2039 and 62301032, and in 
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(IRS) to enhance an orthogonal frequency division multiplex‑
ing (OFDM) based ISAC system, ensuring the communication 
rate of the desired user was maintained. The authors in Ref. 
[6] investigated the robust beamforming design under the sta‑
tistical CSI, focusing on SINR requirements. They proposed a 
double-loop deep unfolding (DU) approach to address this 
challenge, and simulation results underscored the effective‑
ness of their proposed robust beamforming design algorithm. 
From the sensing perspective, the authors in Ref. [7] proposed 
a robust beamforming scheme by adopting the CRB for angle 
estimation as the sensing performance metric, and the simula‑
tion results demonstrated that the proposed scheme main‑
tained robust direction of arrival (DoA) estimation perfor‑
mance across various targets, indicating its effectiveness. As a 
step further, the authors in Ref. [8] explored the impact of re‑
configurable intelligent surfaces (RIS) in mitigating multi-user 
interference (MUI) while satisfying CRB constraints. Their 
simulation results demonstrated superior estimation perfor‑
mance compared with previous works based on SINR of echo 
signals. The authors in Ref. [9] focused on sidelobe control in 
sensing to enhance target detection performance. Addition‑
ally, authors in Ref. [10] investigated the detection probability 
in radar sensing with binary detection, incorporating Minorize-
Maximize (MM) algorithms to achieve optimal sensing beam‑
patterns across diverse scenarios.

It can be seen that the aforementioned existing work utilizes 
different metrics for sensing and communication to achieve 
the performance tradeoff in ISAC systems. In the absence of a 
unified metric for ISAC system design, the authors in Refs. 
[11] and [12] employed mutual information (MI) to evaluate 
the performance of communication and sensing. Simulation re‑
sults showed MI could be used to assess the efficiency of trans‑
mission and achieve the performance tradeoff in ISAC sys‑
tems. From the perspective of detection, the authors in Refs. 
[13] and [14] respectively employed Kullback-Leibler (KL) di‑
vergence to analyze ISAC systems, thereby formulating a uni‑
fied design framework. Furthermore, the authors in Ref. [15] 
proposed a novel allocation approach to ISAC systems using 
KLD. Simulation results demonstrated that the proposed 
scheme achieved a higher KLD compared with the uniform 
power allocation scheme. These approaches provide a compre‑
hensive method to balance and optimize both sensing and com‑
munication functionalities within ISAC systems. However, all 
the above studies overlook the interference caused by clutter 
in the environment. This oversight misaligns with practical 
conditions, potentially degrading the sensing performance in 
realistic ISAC systems.

In this paper, we employ KLD as a unified performance met‑
ric to design ISAC systems and construct a model that ac‑
counts for the presence of static clutter for ISAC scenarios. In 
particular, we focus on constellation and beamforming design 
with the aim of investigating the performance tradeoff and 
achieving clutter suppression. A successive convex approxima‑

tion (SCA) method is used for constellation design, and the 
fractional optimization technique is employed for beamform‑
ing design. Simulation results reveal the tradeoff in terms of 
sensing, communication KLD, and the SINR of echo signals 
and BER in ISAC systems, validating that the proposed beam‑
forming design can suppress the clutter and enhance sensing 
performance.
2 ISAC System Model with Clutter

We present the ISAC system model in the presence of static 
clutter and employ the KLD as a criterion to define a unified 
performance metric. This unified metric illustrates the rela‑
tionship between KLD and demodulation error as well as de‑
tection probability.
2.1 System Model and Signal Model

As depicted in Fig. 1, we consider an ISAC system compris‑
ing one base station (BS), one single-antenna communication 
user, one sensing target, and static clutter. The ISAC BS is 
equipped with two uniform linear arrays (ULAs), each with M 
antennas. Besides serving the communication user, the BS 
also exploits the echoes of communication signals to detect the 
potential sensing target in a specific direction. Specifically, 
we denote the distance between the target and the BS as ds, while the distance from BS to user is dc.To enhance the real‑
ism of the model, the Saleh-Valenzuela channel model is con‑
sidered for communication, comprising one line-of-sight (LoS) 
path and p non-LoS (NLoS) paths, and the extended target 
model is considered for sensing. Compared with the sensing 
target, the radar cross section (RCS) of scatters in communica‑
tion links and users is much smaller, which is thus ignored in 
this paper. The angles of departure (AoD) for the LoS path and 
the p-th NLoS path of the BS-user link are denoted as θc and 
θp, respectively, while the AoD for the j-th sensing path is de‑
noted as θj. Besides, the clutter is located at a distance of du 

BS: base station     ISAC: integrated sensing and communication
▲Figure 1. An illustration of the considered ISAC system
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from the BS in the direction of θu. Since the clutter is typically 
static, its AoD and distance information are assumed to be 
known at the BS, and a point model is employed to depict it. 
Besides, the clutter is passive and far away from the communi‑
cation user, and therefore its impact on communication perfor‑
mance can be omitted.

With the ISAC waveform transmitted by the BS denoted as 
s = [ s1,…, sL ] ∈ C1 × L, where L denotes the number of snap‑
shots, the discrete-time received signals yc ∈ C1 × L at the user 
can be expressed as

yc = ρ0d-2
c Pt (aH (θc ) + ∑

p = 1

P

αpa
H (θp ))ws + nc ≜

ρ0d-2
c Pt hcws + nc, (1)

where ρ0 denotes the path loss at the reference distance d0 =
1 m, a (θ ) = [1,ej2πδ sin (θ ) ,…,ej2π( M - 1) δ sin (θ ) ]T ∈ CM × 1 is the 
transmit antenna steering vector with δ denoting the normal‑
ized antenna spacing, αp denotes the small-scale fading of the 
p-th NLoS path, w ∈ CM × 1 denotes the normalized beamform‑
ing vector with wHw = 1, and nc~CN (0,σ2 c IL ) denotes the ad‑
ditive white Gaussian noise (AWGN) vector at the communica‑
tion user.

As for sensing, the received sensing echo signals 
Yr ∈ CM × L at the BS can be expressed as:
Yr =

                 
ρ0d-4

t Pt ∑
j = 1

J

b∗( )θj a
H( )θj ws

target component

+

                ρ0d-4
u Pt b

∗( )θu aH( )θu ws
clutter component

+ N r
noise , (2)

where b (θ ) ≜ a (θ ) denotes the receiving antenna steering vec‑
tor, and N r = [nr,1,…,nr,L ]

T ∈ CM × L denotes the AWGN at the 
BS with nr,l~CN (0,σ2 rIM ),∀1 ≤ l ≤ L. The detection of the po‑
tential target at the l-th frame can be cast as the binary hypoth‑
esis testing as follows:
y r =
ì

í

î

ï
ïï
ï

ï
ïï
ï

ρ0d-4
u Pt b

∗( )θu aH( )θu ws + nr                                                               H0

ρ0d-4
t Pt ∑

j = 1

J

b∗( )θj a
H( )θj ws + ρ0d-4

u Pt b
∗( )θu aH( )θu ws + nr  H1.

(3)
As evident from Eqs. (2) and (3), the existence of clutter 

can significantly affect the detection, indicating the necessity 
of clutter suppression.
2.2 KLD-Based Unified Performance Metric

For a pair of probability density functions (PDFs), KLD is 
defined as the relative entropy from one PDF fn ( x ) to another 

PDF fm ( x ) to measure the information gain achieved by em‑
ploying the distribution fm instead of fn

[13], hence, the KLD can 
be defined as:

KLDn → m = ∫-∞
∞

fm ( x ) log2
fm ( x )
fn ( x ) dx. (4)

To compare the differences among multiple PDFs, one can 
consider the KLD between each pair of PDFs and take either 
the average or the minimum of all the comparison results. In 
communication systems, the KLD can be employed to assess 
the demodulation performance, as the error performance is sig‑
nificantly influenced by the pair of closest symbols. Specifi‑
cally, for each pair of different data symbols { sm,sn }(m ≠ n )in 
a Q-ary signal constellation, the KLD in communication de‑
modulation can be represented as:

KLDc = min
n ≠ m ∫-∞

∞
fm ( x ) log2

fm ( x )
fn ( x ) dx. (5)

From the perspective of sensing systems, the KLD can be 
utilized to evaluate the difference between H0 and H1, as 
Stein’s Lemmas state that for any fixed false alarm probabil‑
ity, the maximization of the KLD between H0 and H1 leads to 
an asymptotic maximization of detection probability[16], and 
hence, the KLD in sensing detection can be expressed as

KLDr = KLD(H0||H1 ). (6)

2.2.1 KLD for Communication
For communications, based on Eq. (1), the PDF of the re‑

ceived symbol yc is given as

fm ( x ) ≜ f ( yc| { sm,w }) = exp (-( )yc - μm

T
Σ-1 (yc - μm ) )

(2π)2|Σc|
,

(7)
where yc ≜ [ yc,R,yc,I ]

T with yc,R and yc,I denoting the real and 
imaginary components of yc, μm ≜ [ μc,R, μc,I ]

T with μc,R =
ρ0d-2

c Pt Re { hcwsm } and μc,I = ρ0d-2
c Pt Im { hcwsm }, and 

Σc = σ2
c I2.Substituting Eq. (7) into Eqs. (1) and (5), the KLD in com‑

munication can be expressed as
KLDc =
min
m ≠ n

1
2ln2 ( )tr (Σ -1

c Σc ) - 2 + ( )μm - μn
H
Σ -1

c ( μm - μn ) + ln |Σc||Σc| =

min
m ≠ n

1
2σ2

c ln2 ( )μm - μn
H ( μm - μn ). (8)

It can be readily seen that an ISAC system with a larger 
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KLDc value exhibits superior demodulation performance as 
corresponding transmit symbols mixed with noise can be more 
easily distinguished by the receiver.
2.2.2 KLD for Sensing

Based on Eq. (3), the PDFs of yr under H0 and H1 are ex‑
pressed as:

f0(yr ) = 1
πM|Σu| exp ( )-yH

r Σ
-1
u yr ,

f1(yr ) = 1
πM|Σu + Σ s| exp ( )-yH

r (Σu + Σ s )-1yr , (9)

where Σ s = ρ0d-4
t PtE{| s |2}AsWA

H
s , E{| s |2} = ∑

m = 1

Q

Pr ( sm )|sm|2,
As = ∑

j = 1

J

b∗(θj ) aH( )θj , W = wwH and Σu =
ρ0d-4

t PtE{| s |2}AuWA
H
u + σ2

r IM, Au = b∗(θu ) aH(θu ).
By substituting Eq. (9) into Eqs. (1) and (6), the KLD for tar‑

get detection can be derived as
KLDr = ln |

|
|||| IM + Σ - 12

u Σ sΣ
- 12
u

|
|
|||| +

tr (( IM + Σ - 12
u Σ sΣ

- 12
u )-1 - IM ). (10)

The waveform design for detection can be addressed by 
maximizing KLDr in Eq. (10) in order to obtain the optimal de‑
tection probability performance in terms of Stein’s Lemmas[16].
3 ISAC Constellation Design Under KLD 

Performance Metric
We investigate the methodology of constellation design un‑

der the KLD metrics in Eqs. (8) and (10) to achieve a tradeoff 
between sensing and communication performance in this sec‑
tion. Additionally, the maximum instantaneous transmit 
power constraint is considered to ensure the transmit power 
remains within the linear dynamic range of the amplifier.

The constellation design can be formulated as a max-min 
optimization problem with power constraints, which can be 
solved by the SCA algorithm. It’s worth noting that the optimi‑
zation of constellation reveals the inherent trade-off between 
sensing and communication performance.
3.1 Constellation Design Under Single-Antenna Setup

Based on the expressions in Eqs. (8) and (10), it is evident 
that the KLD performance metric is influenced by both the 
constellation set and the beamforming vector. In practice, the 
constellation set is fixed and shared between the transmitter 
and the receiver to minimize signaling overhead. Therefore, 
constellation design can be analyzed in a single-antenna 
setup, allowing for a separation of the constellation design 
from the beamforming design.

First, based on the KLD performance metrics in Eqs. (8) 
and (10), while ensuring the amplitude of the transmit symbol 
remains within the linear dynamic range of the amplifier, the 
ISAC constellation design problem can be formulated as

max{ sm } KLDc

s.t.  KLDr ≥  KLDr,thresh.      |sm|2 ≤ 1, m = 1,2,…,Q, (11)
where KLDr,thresh. denotes the lower boundary of KLDr in order 
to ensure the sensing performance.

To decouple the constellation design from the beamform‑
ing design, we consider a single-antenna scenario setup 
while substituting the expressions of the intermediate vari‑
ables, and the KLD for communication in Eq. (8) can be sim‑
plified as follows.

KLDc = min
m ≠ n

1
2σ2

c ln2 ( μm - μn ) H ( μm - μn ) =
ρ0d-2

c Pt

2σ2
c ln2 min

m ≠ n
|sm - sn|2 . (12)

We can see from Eq. (12) that the minimum distance 
among the inner points in the constellation determines the 
communication demodulation performance. This result 
makes sense as the minimum distance dictates the noise mar‑
gin of the constellation.

Similarly, for a single-antenna scenario setup, the KLD for 
radar sensing in Eq. (10) can be simplified as[17]:

KLDr = ln (1 + ζ
σ2

r ) + σ2
r

ζ + σ2
r

- 1, (13)
where ζ = E{| sm |2} ρ0d-4

t Pt denotes the power of echo sig‑
nals. It can be readily seen from Eq. (12) that the KLD for 
sensing is positively related to E{| sm |2} as f '( x ) = 1/ (1 +
x ) - 1/ (1 + x ) 2 is always greater than 0 when x > 0 and KLDr 
can be reformulated as f (E{| sm |2} ρ0d-4

t Pt /σ2
r ), indicating 

the average power of inner points in the constellation deter‑
mines the sensing performance.

Based on Eqs. (12) and (13), Problem (11) can be reformu‑
lated as

max
{ }sm

min
m ≠ n

|| sm - sn

2

s.t.  r2 ≤  | sm|2 ≤ 1, m = 1,2,…,Q , (14)
where r constraints the average power of the constellation to 
ensure the difference between the echo signals and noise in 
the detection. The setting of r is intended to ensure the lower 
bound of the sensing performance of the ISAC system.
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Problem (14) is non-convex and to address this, we utilize 
the SCA technique in the following discussion[18].
3.2 Constellation Design with SCA

For ease of description and intuitive understanding, Prob‑
lem (14) can be reformulated as

max
S

t

s.t.    r2 ≤  | sm|2 ≤ 1,m = 1,2,…,Q,
|| sm - sn

2 ≥ t2, m, n = 1,2,…,Q ; m ≠ n , (15)
where S = [ s1,…,sQ ] ∈ RQ × 2 with s i = [Re ( si ), Im ( si ) ] T de‑
notes the point location in the constellation.

By introducing superscripts ( l ) to represent the value of 
variables at the l-th iteration and applying a first-order Taylor 
expansion to the constraints at S( l ), Problem (15) can be ap‑
proximated as

max
△S( l )

t( l )

s.t.   s ( l )
m

T s ( l )
m + 2s ( l )

m
T△s ( l )

m + △s ( l )
m

T△s ( l )
m ≤ 1, m = 1,2,…,Q

s ( l )
m

T s ( l )
m + 2s ( l )

m
T△s ( l )

m ≥ r2, m = 1,2,…,Q
s ( l )

m
T s ( l )

m + s ( l )
n

T s ( l )
n - 2s ( l )

m
T s ( l )

n +
2 ( )s ( l )

m
T - s ( l )

n
T ( )△s ( l )

m - △s ( l )
n ≥ t( l ) , 

m, n = 1,2,…,Q ;  m ≠ n
t( l ) ≥ t( l - 1)  , (16)

where the second and third constraints are first-order Taylor 
approximations of the original expressions and the fourth is 
employed to ensure the minimum distance among inner points 
can continually increase with each iteration. By utilizing the 
optimal solution △S ( l )opt to update the original term with S( l + 1) =
S( l ) + △S ( l )opt and repeatedly solving Problem (16) until it con‑
verges, we can eventually obtain S*.

The complexity of the constellation design mainly comes 
from the application of interior within each iteration, which is 
O ( I × ln (1/ε )Q3 ), where I denotes the number of iterations, Q 
denotes the order of constellation and ε denotes the duality 
gap of the interior point method[19]. It can be seen that the com‑
plexity of this algorithm primarily increases cubically with the 
dimension of variables.

As for the convergence of this algorithm, within each itera‑
tion, we have
s( l )

m
T s( l )

m + s( l )
n

T s( l )
n - 2s( l )

m
T s( l )

n + 2 ( s( l )
m

T - s( l )
n

T ) (△s( l )
m -

△s( l )
n ) ≥ t( l ) ≥ t( l - 1) , m, n = 1,2,…,Q ;  m ≠ n. (17)

The right side of Problem (17) shows that the value of ob‑
jective function monotonically increases during the SCA pro‑
cess. Based on the first constraint in Problems (16) and (17), 
we have

t( l ) ≤ s( l )
m

T s( l )
m + s( l )

n
T s( l )

n - 2s( l )
m

T s( l )
n + 2 ( )s( l )

m
T - s( l )

n
T ( )△s( l )

m - △s( l )
n =

( s( l )
m

T s( l )
m + 2s( l )

m
T△s( l )

m ) + ( s( l )
n

T s( l )
n + 2s( l )

n
T△s( l )

n ) -
2( s( l )

m
T s( l )

n + s( l )
m

T△s( l )
n + s( l )

n
T△s( l )

m ) <
2 - 2( s( l )

m
T s( l )

n + s( l )
m

T△s( l )
n + s( l )

n
T△s( l )

m ) <
2 + 2( || s( l )

m || s( l )
n + || s( l )

m ||△s( l )
n + || s( l )

n ||△s( l )
m ) = bu . (18)

Note that the value of bu is limited; hence, the alternating 
optimization is guaranteed to converge.

By setting different values of r, we can obtain the corre‑
sponding constellation to achieve various tradeoffs between 
sensing and communication performance as a larger r repre‑
sents a higher average power for better detection, which also 
results in a smaller inner-constellation distance and poorer 
communication performance.
4 Sensing Clutter Suppression Design Based 

on KLD
In this section, we study the beamforming design in the 

presence of clutter as depicted in Fig. 1 with a fixed constella‑
tion set designed in Section 3. The aim of beamforming fo‑
cuses more on clutter suppression, as the tradeoff between 
sensing and communication performance is adjusted by set‑
ting different values of r in the constellation design. We will 
show that the maximization of KLD in terms of sensing in the 
presence of clutter is eventually equivalent to maximizing the 
SINR of echo signals.

With the fixed constellation mapping designed in the previ‑
ous section, the BS can achieve various tradeoffs between 
sensing and communication performance by setting different 
inner radii r in Problem (14). However, as indicated by Eq. 
(2), the influence of clutter still exists. To address this issue, 
we explore optimal beamforming to mitigate the impact of clut‑
ter based on Eq. (10) shown as follows.

In the presence of clutter, the KLD for sensing in Eq. (10) 
can be further derived as:

KLDr = ln | (Σu + Σ s ) Σ -1
s | + tr éë(Σu + Σ s )-1

Σ s
ù
û =

ln | IM + βsAsWA
H
s ( βuAuWA

H
u + IM )-1 | +

tr éë( IM + βuAuWA
H
u )-1

βsAsWA
H
s + IM

ù
û

-1, (19)

where βs = ρ0d-4
s PtE{ }|| sm

2

σ2
r

 and βu = ρ0d-4
u PtE{ }|| sm

2

σ2
r

.
In the following, we employ the KLD for sensing in the pres‑

ence of clutter in Eq. (10) to explore the optimal beampattern 
to achieve clutter suppression. To further simplify KLDr, we 
apply the Woodbury identity as follows[20].

(A + UCV )-1 = A-1 - A-1U (C-1 + VA-1U )-1VA-1, (20)
where A ∈ CM × M,U ∈ CM × K,C ∈ CK × K and V ∈ CK × M. By re‑
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placing matrices A and C with identity matrices, we can obtain
( I + UV )-1 = I - U ( I + VU )-1V. (21)
Then, let U = ( βuAuWA

H
s + IM )-1

Asw and V = βsw
HAH

s , we 
can obtain:

KLDr = ln (1 + βsw
HAH

s ( βuAuww
HAH

u + IM )-1
Asw) +

1
1 + βsw

HAH
s ( )βuAuww

HAH
u + IM

-1
Asw

.
(22)

Again, note that f ( x ) = ln (1 + x ) + 1/ (1 + x ) is monotoni‑
cally increasing with the increase of x; hence, the maximiza‑
tion of KLDr can be formulated as:

max
w

  βsw
HAH

s ( βuAuww
HAH

u + IM )-1
Asw

s.t.    wHw = 1. (23)
It can be seen that the objective function of Problem (23) 

can be further transformed as follows.
βsw

HAH
s ( )βuAuww

HAH
u + IM

-1
Asw =

βsw
HAH

s Asw  tr éë ù
û( )βuAuww

HAH
u + IM

-1 =
βsw

HAH
s Asw 

1 + βuw
HAH

u Auw
   . (24)

Based on the above results, Problem (23) can be reformu‑
lated as follows.

max
w

  βsw
HAH

s Asw 
1 + βuw

HAH
u Auw

s.t.    wHw = 1. (25)
It can be observed that the KLD maximizing problem is even‑

tually transformed to maximizing the SINR of echo signals, 
thereby achieving clutter suppression. To obtain the optimal 
beamforming vector of Problem (25), we first apply the con‑
straint to transform the objective function of Problem (25) into

βsw
HAH

s Asw 
1 + βuw

HAH
u Auw

= βsw
HAH

s Asw 
βuw

H ( 1
βu

I + AH
u Au )w

.
(26)

Since 1
βu

I + AH
u Au is a positive semi-definite matrix, we 

consider its lower triangular Cholesky decomposition, i. e., 
CCH = 1

βu
I + AH

u Au. Let w = (CH )-1
y, and we can obtain:

βsw
HAH

s Asw 
βuw

H ( 1
βu

I + AH
u Au )w

= βsy
HC-1AH

s As( )CH -1
y 

βuy
Hy

.
(27)

According to the Rayleigh quotient[21], Problem (25) has a 
closed-form solution as shown below.

w* = ( )CH -1
umax



 


( )CH -1

umax
,

(28)
where umax denotes the eigenvector of C-1AH

s As(CH )-1 corre‑
sponding to the largest eigenvalue λmax. By utilizing the opti‑
mal transmit beamforming vector in Eq. (25), the BS can effec‑
tively suppress clutter by maximizing the SINR of the echo sig‑
nals, as demonstrated in Problem (25), which leads to en‑
hanced sensing performance in the ISAC system.
5 Numerical Results

In this section, we provide numerical results to demon‑
strate the performance of the constellation and beamforming 
design methodology. The number of antennas is set as 
M = 16 and the inner-element spacing is λ/2 with λ denoting 
the wavelength of the transmit signal. The transmit power of 
BS is set as 30 dBm and the path loss at the reference dis‑
tance of 1 m is set as −30 dBm. In addition, the DoAs of the 
target, user and static clutter are θs = 30∘, θc = 18∘ and θu =
45∘, respectively. Besides, the BS-target, the BS-user and the 
BS-clutter distances are set as ds = 600 m, dc = 800 m and 
du = 750 m. The noise power at the BS and the user is set as 
−110 dBm and −70 dBm, respectively. The number of NLoS 
links is set as 4 while the number of scattering points on the 
extended target is set as 10.

The convergence behavior of the SCA algorithm for constel‑
lation design is shown in Fig. 2, illustrating the minimum 
inter-point distance t versus the iteration number for Q = 16 
and r = 0.4. It is shown that the minimum inter-point distance 
stabilizes by the fourth iteration, indicating that the algorithm 
has converged. This demonstrates the good convergence of 

▲Figure 2. Minimum inter-point distance versus iteration number
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this SCA algorithm for constella‑
tion design algorithm.

Next, in Fig. 3, we provide 
the optimized constellation set 
with various inner ring radii r 
and the modulation order of Q =
16. A larger r results in a 
smaller minimum inter-point 
distance within the constella‑
tion. This results in more con‑
stellation points clustering at 
the edge of the unit circle, lead‑
ing to a gradual transition of the 
constellation mapping from ir‑
regular to regular. This demon‑
strates tuning r can generate dif‑
ferent constellations and the 
corresponding result can 
achieve different tradeoffs be‑
tween sensing and communica‑
tion performance.

To further investigate the per‑
formance tradeoff, we illustrate 
the Pareto bound between sens‑
ing and communication from the 
perspective of KLD in Fig. 4. 
The constellations designed in 
Fig. 3 are taken into consideration. It can be seen that KLDr strictly and monotonically decreases with the increase of 
KLDc, indicating an inherent tradeoff in the ISAC system. 
With higher inner ring radii r, more constellation points clus‑
ter at the edge of the unit circle, shifting the tradeoff state 
from right bottom to left top in Fig. 4 and vice versa. There‑
fore, we can achieve the desired performance tradeoff to meet 
various needs by selecting corresponding constellations.

As a step further, we evaluate the performance of the trans‑
mit beampattern generated by the proposed design methodol‑
ogy compared with the beampattern generated by the Maxi‑
mum Ratio Transmission (MRT) algorithm and the methods 
proposed in Ref. [14], as shown in Fig. 5. The beampattern 
generated by the MRT algorithm exhibits significant power 
gain in the direction of targets while the beampattern from 
Ref. [14] has high gain in both the direction of the user and 
the target as the ISAC system design in Ref. [14] considers the 
tradeoff between sensing and communication through beam‑
forming. However, the influence of static clutter is overlooked 
in these schemes. In contrast, the transmitted waveform gener‑
ated by our proposed algorithm is predominantly focused in 
the desired direction, while a deep fading occurs in the clutter 
direction. This indicates that the proposed scheme effectively 
achieves clutter suppression, thereby enhancing overall sens‑
ing performance.

In Fig. 6, we further evaluate the performance of the pro‑

posed design by comparing the SINR of echo signals with 
other algorithms. The optimized ISAC constellation under vari‑
ous r is employed in this example. As it can be seen, the pro‑
posed algorithm achieves 0.7 dB gain over the MRT algorithm 
and 3 dB gain over the method in Ref. [14], indicating the pro‑
posed algorithm can successfully achieve clutter suppression 
better. The method in Ref. [14] allocates more power to the 
user direction but less power to the target direction to balance 

▲Figure 3. Constellation under different inner ring radii r

KLD: Kullback-Leibler divergence
▲Figure 4. Tradeoff between sensing and communication
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sensing and communication as depicted in Fig. 5. Conse‑
quently, the SINR is the lowest in comparison. Besides, re‑
gardless of the algorithm employed, the SINR is monotonically 
increasing with the increase of r. This is attributed to the 
greater clustering of constellation points along the edge of the 
unit circle, resulting in an overall increase in the average 
power of the corresponding constellation.

With the transmit beampattern generated by the proposed 
design methodology, we further evaluate the BER performance 
of various constellation mappings under different r. As illus‑
trated in Fig. 7, a better demodulation performance is 
achieved by a smaller r as constellation points with lower 
power are more likely to be distributed within the unit circle, 
resulting in a larger inter-point distance. Considering Figs. 5 
and 6, the tradeoff between communication and sensing perfor‑

mance in the ISAC system stems from the balance between 
randomness and determinism, while the value of r is required 
to be set according to realistic requirements.
6 Conclusions

In this paper, we investigated a comprehensive design meth‑
odology for constellation and beamforming in ISAC systems, 
particularly in environments with static clutter. We utilized 
the KLD as a critical metric in our analysis. Initially, we intro‑
duced a unified ISAC performance metric based on KLD and 
used this metric to guide the ISAC constellation design 
through the SCA technique. Following this, we demonstrated 
that the optimal beamforming design, guided by KLD, is math‑
ematically equivalent to maximizing the SINR of echo signals. 
We derived a closed-form solution from this beamforming 
strategy. Simulation results validated the effectiveness of our 
proposed constellation design methodology and clutter sup‑
pression technology, clearly illustrating the inherent perfor‑
mance tradeoffs in ISAC systems. In future work, we will con‑
sider more complex real-world scenarios, including more intri‑
cate clutter distributions and the influence of strong scatters 
in communication links. The deeper performance tradeoff in 
ISAC systems will be investigated in our future work.
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1 Introduction

In future 6G wireless networks, we expect that the scarcity 
of spectrum resources will be exacerbated by the increas‑
ing number of wireless communication devices and 
higher demands for transmission rates[1–3]. The growing 

sensing requirements in applications such as unmanned aerial 
vehicles and intelligent vehicles have made the coexistence of 
radar-communication spectrum a vital issue[4–6]. Due to the 
benefits of low hardware complexity reduction, spectrum shar‑
ing, low power consumption, and joint signal processing, dual-
functional radar-communication (DFRC) is now regarded as a 
key enabling technology in 6G systems[7–8].

In the DFRC systems where radar and communication 
share a platform, the joint beamforming design enables multi-
user communication and radar sensing by exploiting the spa‑

tial degree of freedom (DoF) [9]. In Ref. [10], the goal was to 
minimize the radar beampattern mean square error while satis‑
fying communication quality of service constraints. In Ref. 
[11], the beamforming design was proposed to maximize the 
worst signal-to-interference-noise ratio (SINR) among all us‑
ers, while satisfying the transmit waveform covariance and 
power constraints. The Cramér-Rao bound was used as the ra‑
dar performance metric and the SINR as the communication 
metric to optimize beamformers[12]. Under constraints of power 
and signal-clutter-noise ratio, a low-complexity beamforming 
scheme to maximize the sum rate was investigated in Ref. [13].

While these works considered the communication metrics 
as the objective function, the authors investigated the joint 
beamforming design using the radar metrics as the objective 
function in Refs. [14–16]. In Ref. [14], an approach to mini‑
mizing the radar beampattern mean squared error under the 
SINR constraints was proposed. In Ref. [15], under the same 
SINR constraint, the authors developed the joint beamformer 
by matching the radar detection beampattern. In Ref. [16], the 
authors compared the beamforming designs of the beampat‑

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant No. 62201266, and in part by the Natural Sci⁃
ence Foundation of Jiangsu Province under Grant No. BK20210335.
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tern matching error minimization and the beampattern gain 
maximization under the power and SINR constraints. A short‑
coming of the conventional beampattern matching design is 
that a fine grid of points covering the location sectors of inter‑
est is required to approximate the desired beampattern. In con‑
trast, the beampattern gain maximization design focuses on 
the direct optimizing of the radar direction gain without requir‑
ing complex dense grids, which inspires us to leverage this 
characteristic for DFRC beamforming design.

In this work, we study the joint beamforming design prob‑
lem for the DFRC systems in which a base station (BS) trans‑
mits the shared signals for both multi-user communication and 
radar target sensing. Our goal is to maximize the sum rate un‑
der the constraints of the radar beampattern gain and the 
transmit power budget. To tackle the non-convexity of the 
problem at hand, we employ the fractional programming (FP) 
method to obtain a tractable form of the objective function[17]. 
Additionally, the non-convex radar beampattern gain con‑
straints are handled using the semidefinite relaxation (SDR) 
technique[18]. By doing so, we design an iterative algorithm to 
obtain the joint beamformers for radar sensing and multi-user 
communication. Numerical results demonstrate that a flexible 
trade-off between the communication sum rate and radar be‑
ampattern gain performance can be achieved by the proposed 
algorithm.

Notations are as follows: A and a denote a matrix and a col‑
umn vector; Superscripts ( ⋅ ) T, ( ⋅ ) * and ( ⋅ ) H denote the 
matrix transpose, the conjugate and the conjugate transpose, 
respectively. Expectation and the real part of a complex vari‑
able are denoted by E{ ⋅ } and ℜ {⋅}; Tr ( ⋅ ) stands for the 
trace of a matrix. IN is an N × N identity matrix; rank (A) de‑
notes the rank of A, and A ≽ 0 indicates that A is positive 
semidefinite.
2 System Model and Problem Formulation

As shown in Fig. l, we consider a DFRC system in which 
the BS is equipped with an N-antenna uniform linear array 
(ULA). The BS simultaneously serves K single-antenna users 
and senses Q potential targets. The shared transmit signal 
from the BS can be expressed as
x = ∑

k = 1

K

wk sk , (1)
where wk ∈ ℂN × 1 is the beamforming vector for the k-th user, 
and sk is the transmitted data symbol satisfying E { sk s*

k } = 1 
and E { si s

*
j } = 0, ∀i ≠ j. The power constraint at the BS is ∑k = 1

K ||wk||2 ≤ Pmax, where Pmax is the maximum transmit 
power budget. The received signal of the k-th communication 

user can be given by
yk = hH

k x + nk,  ∀k, (2)
where nk~CN (0, σ2

k ) is the independent identically distrib‑
uted (i. i. d) complex Gaussian noise with the variance σ2

k. In 
this work, we consider the widely adopted geometric channel 
model given by Ref. [19]1:

hk = N
Lk

∑
l = 1

Lk

αk, l a (ϕk, l) ∈ CN × 1,  ∀k, (3)
where Lk is the number of paths between the BS and the k-th 
user, αk, l is the gain of the l-th path for the k-th user, ϕk, l is 
the angle of departure (AoD) of the k-th user of the l-th path. 
The transmit steering vector of direction θ is specified as

a (θ ) = 1
N

é

ë
êêêê1, ej 2π

λ d cos θ,⋯, ej 2π
λ d ( )N - 1 cos θù

û
úúúú

T

, (4)
where d and λ are the antenna spacing and signal wavelength. 
Under this setup, the sum rate of all k users is expressed as

R = B ∑
k = 1

K  log2(1 + γk ) , (5)
where B is a constant denoting the channel bandwidth. Be‑
sides, γk is the SINR of the k-th user and is given by

1 The line-of-sight component is part of the channel model, making it easier to observe the impact of the user􀆳s direction on the beam gain. The proposed method is applicable to various 
types of channels.

▲ Figure 1. Illustration of the considered dual-functional radar-
communication (DFRC) system

Target 1
Target 2 Target Q

…

User 1

User 2
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hK
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γk = |hH
k wk|2

∑
i ≠ k

K

|| hH
k w i

2 + σ2
k

,  ∀k

 . (6)
For the radar sensing, the detection performance of poten‑

tial targets can be enhanced by forming highly directional 
beams towards the target directions. The transmit beampattern 
gain at a particular angle is given by Ref. [20] as

p (θ ) = E{|aH(θ ) x|2} = aH(θ ) (wkw
H
k ) a (θ ) . (7)

Our goal in this work is to design the beamforming vectors 
{ wk }K

k = 1, such that the sum rate is maximized under the con‑
straints of the transmit power budget and the radar beampat‑
tern gain of Q directions is guaranteed. The corresponding op‑
timization problem can be formulated as

max{ wk }  ∑
k = 1

K  log2(1 + γk ) , (8a)

s.t.  ∑
k = 1

K ||wk||2 ≤ Pmax , (8b)

aH(θq ) (∑k = 1

K

wk w
H
k ) a (θq ) ≥ Γq Pmax, ∀q, (8c)

where θq is the direction of the q-th target, Γq Pmax represents 
the required beampattern gain towards the q-th target, Γq is a 
weighting coefficient satisfying Γ1 + ⋯ + ΓQ ≤ 1. It should 
be noted that due to the logarithmic and fractional terms in 
Eq. (8a) and the non-convex radar beampattern gain con‑
straints in Eq. (8c), it is challenging to directly handle the op‑
timization problem.
3 Proposed Joint Beamforming Design for 

DFRC Systems
In this section, we present an iterative algorithm for solving 

the considered optimization problem (8). We first use the FP 
method to tackle the complex objective function (8a) and then 
transform a considered problem into the tractable form based 
on the SDR technique.
3.1 Transformation of Objective Function

We study the properties of the objective function (8a), a 
typical function with multiple fractional terms. Our goal is to 
convert the objective function to a tractable form. Using the 
Lagrangian duality transformation[17], we take the fractional 
term γk out of the logarithm and then transform the function 
(8a) into a polynomial expression.

Proposition 1: The objective function (8a) can be con‑
verted into

∑
k = 1

K log2(1 + νk ) - νk + ∑
k = 1

K ( )1 + νk || hH
k wk

2

∑
i = 1

K | hH
k w i|2 + σ2

k   , (9)
where νk is an auxiliary variable satisfying νk = γk, ∀k.

Proof: See Appendix A.
Proposition 1 illustrates that the objective function (8a) is 

equivalent to Eq. (9) as long as νk = γk. Even after this trans‑
form, solving the problem remains challenging due to the last 
term in the objective function (9), which is the sum of k frac‑
tional terms. To address this issue, we use the multidimen‑
sional quadratic transform[17].

Proposition 2: The fractional term in Eq. (9), that is
( )1 + νk |hH

k wk|2
∑
i = 1

K | hH
k w i|2 + σ2

k

,  ∀k

  , (10)
which can be quadratically transformed into

2 1 + νk ℜ { τ*
kh

H
k wk } - ∑

i = 1

K |τi|2|hH
k w i|2 - |τk|2 σ2

k , (11)
where { τk }K

k = 1 is the fractional programming auxiliary variable 
expressed as

τk = 1 + νk h
H
k wk

∑
i = 1

K | hH
k w i|2 + σ2

k

, ∀k

 . (12)
Proof: See Appendix B.
Using Proposition 2, Eq. (9) can be further reformulated as
∑
k = 1

K log (1 + νk ) - ∑
k = 1

K

νk +

∑
k = 1

K ( )2 1 + νk ℜ { τ*
kh

H
k wk } - ∑

i = 1

K | τi|2|hH
k w i|2 - |τk|2 σ2

k . (13)
To facilitate the beamforming design, we determine the opti‑

mal auxiliary variables νk and τk by applying νk = γk and Eq. 
(12). Then, we extract the term containing wk from the objec‑
tive function (13) and rewrite the objective function as

∑
k = 1

K ( )2 1 + νk ℜ { τ*
kh

H
k wk } - ∑

i = 1

K | τi|2|hH
i wk|2 =

∑
k = 1

K ( )1 + νk ( )τ*
kh

H
k wk + wH

k hkτk - wH
k ∑

i = 1

K | τi|2h ih
H
i wk  ,

(14)
where the equality holds due to 2ℜ { A } = A + AH. By defin‑
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ing βk = 1 + νk hkτk and Λ = ∑
i = 1

K |τi|2h ih
H
i , the optimization 

problem can be compactly formulated as
max{ wk } ∑

k = 1

K

( )βH
k wk + wH

k βk - wH
k Λwk , (15a)

s.t.  ∑
k = 1

K |wk|2 ≤ Pmax , (15b)

aH(θq ) (∑k = 1

K

wk w
H
k ) a (θq ) ≥ Γq Pmax, ∀q. (15c)

One can see that (15) is a non-homogeneous quadratic con‑
strained quadratic programming (QCQP) problem. In the next 
subsection, we reformulate the problem (15) as a homogeneous 
QCQP problem and adopt the SDR technique to obtain the op‑
timized DFRC beamformers.
3.2 Solution via SDR

We first derive the equivalent form of beampattern gain con‑
straint (15c) by introducing the auxiliary variable t, i.e.,

∑
k = 1

K

aH (θq ) (∑i = 1

K

wkw
H
k ) a (θq ) =

∑
k = 1

K

[aH (θq ), 0] é
ë
êêêê ù

û
úúúú

wk

t
[wH

k , t] é
ë
êêêê

ù

û
úúúú

a (θq )
0 = ∑

i = 1

K

xH
k Cqxk , (16)

where the last equality holds by defining

xk = é
ë
êêêê ù

û
úúúúwk

t
, Cq = é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
úa ( )θq a ( )θq

H 0
0 0

,  Xk = xkx
H
k  . (17)

The non-homogeneous objection function (15a) can be 
equivalently expressed as the following homogeneous form:

∑
k = 1

K ( )[ ]wH
k , t é

ë
ê
êê
ê ù

û
ú
úú
ú-Λ βk

βH
k 0

é
ë
êêêê ù

û
úúúúwk

t  , (18)
where Eq. (18) equals to the objective function (15a) by in‑
troducing the constraint t2 = 1, which can be equivalently 
written by

t2 = [wH
k , t] é

ë
êêêê ù

û
úúúú0N 0

0 1
é
ë
êêêê ù

û
úúúúwk

t
= 1 . (19)

Also, the power constraint (15b) can be manipulated as
∑
k = 1

K

[ ]wH
k ,t é

ë
êêêê ù

û
úúúúIN 0

0 0
é
ë
êêêê ù

û
úúúúwk

t
≤ Pmax . (20)

For simplicity, we define

Ak = é

ë
ê
êê
ê ù

û
ú
úú
ú-Λ βk

βH
k 0 ,  B = é

ë
êêêê ù

û
úúúúIN 0

0 0 ,  D = é
ë
êêêê ù

û
úúúú0N 0

0 1  . (21)
Optimization problem (15) can be restated as
max{ Xk } ∈ HN + 1 ∑

k = 1

K Tr (AkXk ) ,

s.t.  ∑
k = 1

K Tr (BXk ) ≤ Pmax,

∑
k = 1

K Tr (CqXk ) ≥ Γq Pmax, ∀q,
Tr (DXk ) = 1, rank (Xk ) = 1,
Xk ≽ 0, (22)

where HN + 1 is the set of N + 1 dimensional complex Hermi‑
tian matrices. Note that Eq. (22) is still a non-convex optimiza‑
tion problem due to the existence of rank-one constraints. We 
relax the non-convex constrains and then transform problem 
(22) into a convex one. Then, we can solve the converted prob‑
lem using the CVX toolbox in MATLAB[21]. Finally, by apply‑
ing the Gaussian randomization technique to reduce the rank 
of the Xk matrix to one[18], we obtain the beamforming vectors 
{ wk }K

k = 1. Algorithm 1 summarizes the proposed algorithm for 
problem (8).
Algorithm 1. The Proposed Algorithm for Problem (8)
Input: N, K, h1,⋯, hK, maximum iteration number itermax, and 
threshold ε > 0
Output: { wk }K

k = 1
1.  Initialize randomly { w( )0

k }K
k = 1, compute the sum rate R(0);

2. While iter ≤ itermax and | R( )iter - R( )iter - 1 | /B ≥ ε do

3.  Update { ν( )iter
k }K

k = 1 via νk = γk, ∀k ;
4.  Update { τ( )iter

k }K
k = 1 via (12);

5.  Update { w( )iter
k }K

k = 1 via (22) and Gaussian randomization 
technique;
6.  Compute R( )iter  via (5);
7.  iter=iter+1;
8.  End while.

The main computational complexity of the overall algorithm 
is dominated by Step 5 of Algorithm 1. For solving problem 
(22), the interior-point method is commonly utilized[12]. The 
computational complexity of updating { Xk }K

k = 1 is 
O (K 3.5 N 7 log (1 ϵ ) ), where ϵ is the given accuracy level. 
The Gaussian randomization technique is then employed to re‑
cover the beamforming vectors, which adds a complexity of 
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O (K 2.5 N 3 ). The overall complexity is of order 
O (K 3.5 N 7 log (1 ϵ ) + O (K 2.5 N 3 ) )[22].
4 Numerical Results

In this section, we present the numerical results to investi‑
gate the performance of the proposed DFRC joint beamform‑
ing design.

Unless stated otherwise, we assume that the BS equipped 
with N = 16 antennas is serving K = 4 users[23], and the an‑
tenna spacing is set to d = λ 2. As for the channel model, we 
consider Lk = 5 paths with αk, l~CN (0, 1). The AoDs follow 
the Laplacian distribution with uniformly distributed in [ 0, π) 
and angular spread of five degrees [24]. We set the bandwidth 
as B = 10 MHz. In addition, we set Q = 3 sensing directions 
with angles of 50°, 90° and 130°[13]. We assume that the beam‑
pattern gain is the same for all target directions (Γq = Γ, ∀q), 
which allows us to calculate the maximum weighting coeffi‑
cient of beampattern gain for each direction as Γmax = 1 Q. 
The signal-to-noise ratio (SNR) is defined as Pmax σ2

k, with 
σ2

k = 1, ∀k. We set the maximum iteration number  itermax=100 and threshold ε=10−3. The performance of the proposed al‑
gorithm is averaged over 500 Monte-Carlo realizations.

In Fig. 2, we demonstrate the convergence behavior of the 
proposed algorithm under different beampattern gains, while 
holding a fixed SNR of 0 dB. It is evident that the proposed al‑
gorithm converges after 30 iterations. This trend is steady, in‑
dicating a robust and stable algorithm.

Fig. 3 illustrates the performance of sum rates versus SNR 
for different values of Γ. As seen in Fig. 3, the sum rate is the 
highest in the communication-only case (Γ = 0), which means 
there is no constraint imposed by the radar beampattern gain. 
Conversely, as Γ incrementally increases, a noticeable decline 
in the sum rate performance is observed. This trend can be at‑
tributed to the shifting design focus towards enhancing radar 

sensing capabilities. In essence, as the value of Γ escalates, 
the system 􀆳 s priority transitions from solely maximizing com‑
munication sum rate to a more balanced approach.

We evaluate the trade-off between the communication sum 
rate and the radar beampattern gain with different numbers of 
BS antennas in Fig. 4, where SNR is set to 0 dB. It can be 
seen that the sum rate performance increases with the number 
of antennas. Additionally, when the number of antennas in‑
creases, the beampattern gain increases as well due to the in‑
creased DoF.

Fig. 5 depicts the beampattern gain of the proposed design 
when SNR = 0 dB. Our proposed DFRC design simultane‑
ously allocates the beampattern gain to the directions of the 
sensing targets and communication users. Specifically, as the 
value of Γ increases, the beampattern gain weight becomes 
more tilted towards the radar, which is consistent with the re‑
sults in Fig. 3, where the sum rate gradually decreases. In Fig. 
6, we further present the beampattern performance, where us‑
ers are located at [30°, 70°, 110°, 150°]. One can clearly ob‑

Γ
▲Figure 2. Sum rate convergence behavior of the proposed algorithm

SNR: signal-to-noise ratio
▲Figure 3. Sum rate versus SNR for different Γ

▲Figure 4. Sum rate versus Γ for different numbers of antenna
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serve that the beampattern gain is allocated to the desired di‑
rections of the sensing targets and users in the radar-only (Γ =
Γmax ) and communication-only (Γ = 0 ) cases.

Fig. 7 depicts the radar sensing beampattern performance 
for different values when the positions of the communication 
users and radar targets coincide. One can see that, as the Γ 
value increases, the beampattern gain at the radar target and 
communication target directions (50°, 90°, 130° ) increases. 
In addition, compared to the case where users and targets are 
located at different directions in Figs. 5 and 6, the case where 
users and radar targets coincide shows higher beampattern 
gain at the same value of Γ. Fig. 8 shows that the proposed 
method achieves a balance between communication and sens‑
ing. In the radar-only case, compared to the scenario where 
the communication users and radar targets are separated, the 

sum rate performance is better.
5 Conclusions

In this work, we study a joint beamforming design prob‑
lem for the DFRC system and propose an iterative algorithm 
to maximize the sum rate under the radar beampattern gain 
and power constraints. Utilizing the FP technique, we trans‑
form the complex non-convex problem into a more tractable 
form and apply the SDR technique to solve this transformed 
problem. From our experimentation, we demonstrate that the 
proposed algorithm can achieve a flexible trade-off between 
the communication sum rate and the radar beampattern gain 
performance.

▲Figure 5. Radar sensing beampattern performance comparison of dif⁃
ferent Γ, where user directions are uniformly distributed from [ 0, π)

▲Figure 6. Radar sensing beampattern performance comparison of dif⁃
ferent Γ, where users are located at [30°, 70°, 110°, 150°]

▲Figure 7. Radar sensing beampattern performance comparison of dif⁃
ferent Γ, where the positions of the communication users and radar tar⁃
gets coincide

SNR: signal-to-noise ratio
▲Figure 8. Sum rate versus SNR for different Γ, where the positions of 
the communication users and radar targets coincide
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Appendix A
By introducing K auxiliary variables νk to replace each frac‑

tional term γk in Eq.  (5), we can rewrite the unconstrained 
sum rate maximization problem as

max ∑
k = 1

K log (1 + νk )
s.t.  νk ≤ γk,∀k . (23)
Note that Eq.  (23) is a convex optimization problem satisfy‑

ing the strong duality[25].  By introducing K multipliers λk, we 
can obtain a Lagrangian function as

L = ∑
k = 1

K log (1 + νk ) - ∑
k = 1

K

λk(νk - γk ) . (24)
By setting ∂L ∂νk = 0, we obtain the optimal ν⋆

k = γk.  By 
setting ∂L ∂λk = 0, we can obtain the optimal λ⋆

k as

λ⋆
k = 1

1 + γk  . (25)
With the optimal λ⋆

k, Eq.  (24) can be written as
L⋆ = ∑

k = 1

K log (1 + νk ) - ∑
k = 1

K

λ⋆
k (νk - γk ) =

∑
k = 1

K log (1 + νk ) - ∑
k = 1

K νk1 + γk
+ ∑

k = 1

K γk1 + γk
=

∑
k = 1

K log (1 + νk ) - ∑
k = 1

K
νk( )∑

i ≠ k

K | hH
k w i|2 + σ2

k + |hH
k wk|2

∑
i = 1

K | hH
k w i|2 + σ2

k

+

∑
k = 1

K νk|hH
k wk|2

∑
i = 1

K | hH
k w i|2 + σ2

k

+ ∑
k = 1

K |hH
k wk|2

∑
i = 1

K | hH
k w i|2 + σ2

k

=

∑
k = 1

K log (1 + νk ) - ∑
k = 1

K

νk + ∑
k = 1

K ( )1 + νk |hH
k wk|2

∑
i = 1

K | hH
k w i|2 + σ2

k , (26)
where the second equation holds by substituting the expres‑
sion of γk in Eq.  (6).  Expression (26) has the same form as 
Eq.  (9) in Proposition 1.  By substituting ν⋆

k back into Eq.  
(9), we can obtain objective function (8a), which completes 
the proof.

Appendix B
To obtain an equivalent form of Eq.  (10), we can rewrite 

Eq.  (11) as

1 + νk ℜ { τ*
kh

H
k wk } -∑

i = 1

K | τi|2|hH
k wi|2 - |τk|2 σ2

k =

( )∑
i = 1

K | hH
k w i|2 + σ2

k
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÷2 1 + νk ℜbig { τ*khHk wkbig }
∑
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K | hH
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k

- |τk|2 =

( )∑
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K | hH
k w i|2 + σ2

k
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÷

÷

÷

÷
( )1 + νk |hH

k wk|2

( )∑
i = 1

K | hH
k w i|2 + σ2

k

2 -
|

|

|

|

|

|
|||
|

|

|
|

|

|

|

|

|
|||
|

|

| 1 + νk h
H
k wk

∑
i = 1

K | hH
k w i|2 + σ2

k

- τk

2

,∀k

.
(27)

where the first equation holds by factoring out the common 
terms from ∑

i = 1

K |hH
k w i|2 + σ2

k.  Note that, when we have

τ⋆
k = 1 + νk h

H
k wk

∑
i = 1

K | hH
k w i|2 + σ2

k

, ∀k

, (28)
Eq.  (27) becomes equivalent to Eq.  (10) in Proposition 2, 
which completes the proof.
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1 Introduction

With the development of wireless communication 
technologies, the number of users and access de‑
vices is rapidly increasing, leading to an urgent 
shortage of communication spectrum resources. 

Traditionally, communication and sensing systems have been 
designed, developed and deployed independently. However, 
the congestion of the available radio spectrum has stimulated 
interest in combining communication and sensing functions 
within shared frequency bands and potentially on the same 
hardware platforms. In frequency bands below 10 GHz, such as 
the L-band (1–2 GHz), S-band (2–4 GHz), and C-band (4–
8 GHz), radar systems, Long-Term Evolution (LTE), and wire‑
less local area network (WLAN) communication systems are 
widely favored. Above 10 GHz, the operating frequencies of 
5G millimeter-wave communication systems are very close to 
those of automotive millimeter-wave radars. Therefore, realiz‑

ing integrated sensing and communication (ISAC) has become 
necessary and feasible[1]. Currently, ISAC can be classified 
into two categories: One focuses on the coexistence of commu‑
nication and sensing signals within the same frequency 
bands[2]; the other aims to use a unified hardware platform 
with ISAC signals[3].

Interference management is a critical challenge for the 
above ISAC implementation approaches. In coexistence-based 
ISAC systems, communication and sensing are implemented 
by independent hardware that transmits different signals. 
These systems are often not scheduled or synchronized with 
each other, resulting in severe mutual interference between 
communication and sensing signals. Consequently, dual-
function radar-communication systems face high hardware 
complexity and difficulties in joint optimization of radar and 
communication functions. A current mainstream research di‑
rection is to design integrated waveforms based on existing 
communication signals to achieve communication and sensing 
simultaneously. In such ISAC systems, interference manage‑
ment becomes even more complex.

Many studies have focused on interference management in 
ISAC systems[4], where opportunistic spectrum sharing[5] and 
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null space projection[6] are the two typical methods for mitigat‑
ing interference between communication and sensing signals. 
Recently, optimization theory has been widely investigated for 
its effectiveness in interference management in ISAC sys‑
tems[7–8]. The authors in Ref. [9] studied the spectrum sharing 
between multiple-input multiple-output (MIMO) based radar 
and communication systems in cluttered environments. To 
achieve effective clutter suppression, the ISAC system was de‑
signed by jointly optimizing the communication covariance 
matrix and the radar sub-sampling matrix. This scheme mini‑
mizes the interference power at the receiver of the radar sys‑
tem while maintaining the communication performance[10]. In 
Ref. [11], a novel coexistence architecture for communication 
systems and pulse radars was proposed, together with a com‑
prehensive performance evaluation. Different from the coordi‑
nated coexistence of communication and radar in most exist‑
ing ISAC systems, the authors in Ref. [12] investigated the co‑
existence of communication and sensing functions in uncoordi‑
nated scenarios, with a particular focus on the dynamics of in‑
formation sharing.

Additionally, interference cancellation in full-duplex sys‑
tems has been a hot topic for long[13]. An iterative successive 
nonlinear co-site interference cancellation method for in-
band full-duplex communication was proposed in Ref. [14], 
which significantly improves co-site interference cancellation 
through multiple iterations. In Ref. [15], a low-latency pre‑
coding strategy for in-band full-duplex MIMO relay systems 
was introduced to achieve interference cancellation through 
time, space, and radio-frequency (RF) domains[16]. The au‑
thors in Ref. [17] discussed joint analog and digital co-site in‑
terference cancellation techniques in full-duplex transceivers 
with frequency-dependent in-phase/quadrature (I/Q) imbal‑
ance. KIAYANI et al. studied adaptive nonlinear RF interfer‑
ence cancellation techniques to improve system isolation per‑
formance[18]. In fact, interference management in ISAC sys‑
tems is similar to that in full-duplex systems[19]. Some works 
have designed dual-function radar and communication sys‑
tems based on orthogonal frequency division multiplexing 
(OFDM) signals. In Ref. [20], monostatic sensing using 
OFDM in the presence of phase noise was investigated. The 
results show that with appropriate processing strategies, 
phase noise can not only be mitigated but also exploited to 
improve the sensing accuracy. In Ref. [21], the beam-domain 
full-duplex massive MIMO technology was investigated, 
where a precise beamforming scheme and a co-site interfer‑
ence cancellation strategy were proposed to improve spec‑
trum utilization. LIU et al. proposed an effective channel esti‑
mation method for interference channel estimation in the co‑
existence of radar and communication systems[22]. Moreover, 
the authors in Ref. [23] investigated integrating sensing capa‑
bilities into communication systems without significantly in‑
creasing system complexity.

In this work, we delve into interference management in 

ISAC systems and propose a normalized least mean square 
(NLMS) algorithm to mitigate co-site interference. Specifi‑
cally, we begin with a brief review of the widely implemented 
OFDM-based ISAC system models. Different from most exist‑
ing works on ISAC technologies, we perform a detailed model‑
ing and analysis of co-site interference in ISAC systems. On 
this basis, we propose the NLMS algorithm to reconstruct and 
cancel the co-site interference received from the local trans‑
mitter (Tx) at the integrated receiver (Rx). Simulation results 
demonstrate that the proposed algorithm effectively cancels in‑
terference and strikes a good balance between computational 
complexity and algorithm convergence performance. This 
work further advances the theory of ISAC interference manage‑
ment and has significant implications for guiding engineering 
practice.
2 System Model

Most existing works on ISAC have generally assumed that 
the signals received at the integrated receiver consist only of 
echoes and noise, neglecting the co-site interference caused 
by the local transmitter. To briefly illustrate the OFDM-based 
integrated signal processing, we first introduce the ideal 
interference-free ISAC system model. In this work, we investi‑
gate an OFDM-ISAC system with N subcarriers, where each 
subcarrier carries M OFDM symbols per frame. The subcarrier 
spacing is assumed to be Δf, and the symbol time can be ob‑
tained by T = 1/Δf. The transmitted OFDM symbol matrix is 
written as

FTx =
æ

è
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ç

ç

ç

ç
ççç
ç
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ç
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ø

÷

÷

÷
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÷
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x0, 0 ⋯ x0, l ⋯ x0, M - 1⋮ ⋱ ⋮ ⋱ ⋮
xk, 0 ⋯ xk, l ⋯ xk, M - 1⋮ ⋱ ⋮ ⋱ ⋮

xN - 1, 0 ⋯ xN - 1, l ⋯ xN - 1, M - 1

, FTx ∈ AN × M

.
(1)

The Doppler shift causes a phase shift in each element of 
FTx, and each subcarrier experiences a different phase shift. 
For a delay of τ, the phase shift on the k-th subcarrier is ex‑
pressed as ej2π(kΔf + f0 )τ, where f0 is the carrier frequency. 
Hence, the echo signal of the l-th symbol on the k-th subcar‑
rier is given as

(FRx ) k, l = b0(FTx ) k, l ⋅ exp ( j2πTfD l - j2πτ (kΔf + f0 ) ) + ( Z͂ ) k, l,(2)
where fD is the Doppler shift and b0 is the round-trip path loss. 
The matrix Z͂ ∈ CN × M represents the additive white Gaussian 
noise (AWGN) with power σ2. Clearly, FRx contains the param‑
eters τ, fD and b0 to be estimated. As FTx is also known to the 
integrated receiver, the transmitted symbols are removed from 
the received echo signal by symbol-wise division as
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(F ) k, l = ( )FRx k, l
( )FTx k, l

=

b0 ⋅ exp ( j2πTfD l - j2πτ (kΔf + f0 ) ) + (Z ) k, l . (3)
Here, (Z ) k, l = ( Z͂ ) k, l ( )FTx k, l is the noise sample after 
symbol-wise division. The Doppler shift fD and the target dis‑
tance R are obtained by discrete Fourier transform (DFT) for 
each row and inverse discrete Fourier transform (IDFT) for 
each column of (F ) k,l, respectively. Here, we denote the peak 
index of the n-th row of F after DFT as m͂F, n, and the speed of 
the target v can be obtained by

m͂F, n = ë ûfDTM ,
v = fD c

2fc , (4)
where ë û⋅  is the floor function, c is the light of speed, and fc is 
the carrier frequency. Then, we denote the peak index of IDFT 
on the m-th column of F as n͂F, m, and the distance R between 
the sensing target and the base station is derived using[24]

n͂F, m = ê
ë
êêêê ú

û
úúúú

2BR
c , (5)

where B is the bandwidth of the ISAC signal.
Practically, the transmitted signals leaked from the local 

transmitter can cause significant co-site interference at the in‑
tegrated receiver. To address this issue, we propose the NLMS 
algorithm with a decreasing convergence parameter. Fig. 1 il‑

lustrates the ISAC system model with the proposed interfer‑
ence reconstruction and cancellation scheme. The NLMS algo‑
rithm reconstructs the co-site interference in the RF domain 
using a multi-tap circuit consisting of delayers, attenuators, 
and phase shifters. Interference cancellation is then per‑
formed at the receiver to eliminate the co-site interference. At 
the receiver of a communication user, the received signal un‑
dergoes RF demodulation, analog-to-digital conversion, cyclic 
prefix removal, and serial-to-parallel conversion. It is then 
transformed from the time domain to the frequency domain by 
the fast Fourier transform (FFT). Subsequently, we perform 
channel equalization, symbol decision, and symbol demapping 
on the frequency-domain signal to obtain the recovered com‑
munication data.

Next, we model the co-site interference received by the inte‑
grated receiver. As shown in Fig. 1, the Tx and Rx antennas 
are co-located, and mutual interference steps in the signal pro‑
cessing of the sensing receiver through the Tx-Rx channel. In 
this work, we term this mutual interference as the co-site inter‑
ference, and the Tx-Rx channel can be modeled as a Rician 
fading channel[25–27]. Thus, the co-site interference can be de‑
noted as Yci = H ⋅ FTX. The channel matrix is written as

H =

           
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M

,  H ∈ AN × M

, (6)

▲Figure 1. Schematic diagram of the ISAC system with interference reconstruction and cancellation
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where the (k, l )-th element can be expressed as hk =
r/ ( )r + 1 h los

k + 1/ ( )r + 1 hnlos
k , where r is the Rician fac‑

tor. The terms hlos and hnlos represent the line of sight (LoS) 
and non-LoS components, respectively. In a co-site interfer‑
ence channel, the LoS signal is relatively strong, resulting in a 
large value of r. Here, we express the received signal, includ‑
ing the echo signal, the co-site interference, and the noise, as

(FRx) k, l = b0(FTx) k, l ⋅ exp ( j2πTfD l - j2πτ (kΔf + f0 ) ) +
hk(FTx) k, l ⋅ exp ( - j2πτSI(kΔf + f0 ) ) + ( Z͂ ) k, l  , (7)

where τSI represents the co-site interference delay.
3 Normalized Least Mean Square Algorithm

A solution to cancelling the co-site interference is to estab‑
lish a multi-tap circuit between the transmitter and receiver. 
Based on the known transmitted signal, the signal’s amplitude 
and phase parameters are changed through the multi-tap cir‑
cuit. Fig. 2 depicts the signal processing of the multi-tap cir‑
cuit. The input signal x ( t ) from the RF modulator can be ex‑
pressed as

x ( t ) = 2P d ( t ) cos (2πfc t + ϕ ), (8)
where P denotes the power of the transmitted signal, ϕ is the 
initial phase of the carrier, and d ( t ) is the signal generated by 
the OFDM modulator. For simplicity, we assume that the sig‑
nal power and the initial phase satisfy P = 1/2 and ϕ = 0, and 

then we have x ( t ) = d ( t ) cos (2π fc t ). Next, x ( t )goes through 
the delayer, attenuator, and phase shifter. The output signal of 
the l-th tap in the i-th iteration, denoted by g (i )

l ( t ), can be ob‑
tained as

g (i )
l ( t ) ≜ α (i )

l x ( t - τ (i )
l ) ejϕ (i)

l ,  i = 1, 2,⋯, I, (9)
where α (i )

l , τ (i )
l  and ϕ (i )

l  are the attenuation component, delay 
and phase shift of the l-th path at the i-th iteration, respec‑
tively. The output signals of L paths undergo an adder to get 
the reconstructed interference signal g ( t). Then, by subtract‑
ing it from the received signal, the co-site interference cancel‑
lation is achieved. Within a time-frequency resource block, 
the complex amplitude of the signal can be approximated as a 
constant and the received signal can be simplified as

r ( t ) = b0 x ( t - τ ) exp ( j2π fD t) + b1 x ( t - τSI ) + w ( t ), (10)
where b1 is the complex amplitude of the co-site interference. 
The first term in Eq. (10) is the sensing signal reflected by the 
target and the second term is the co-site interference. It is 
worth mentioning that the value of b1 is much larger than b0, since b0 refers to the round-trip path loss, which is propor‑
tional to the square of the distance between the transmitter 
and receiver. For the l-th tap, the error signal e(i )

l ( t ) and cost 
function J (i )

l ( t ) are defined respectively as
e(i )

l ( t ) ≜ r ( t ) - g (i )
l ( t ), (11)

▲Figure 2. Interference reconstruction with NLMS
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J (i )
l ( t ) ≜ E é

ë
ù
û( )e(i )

l ( t ) 2 = E [ ( r ( t ) - g (i )
l ( t ) ) 2 ] . (12)

In the traditional least mean square (LMS) algorithm[28], the 
reconstructed interference signal g (i + 1)

l ( t ) is updated by
g (i + 1)

l ( t ) = g (i )
l ( t ) - 1

2 μ∇J (i )
l ( t ) =

g (i )
l ( t ) + μe(i )

l ( t ) x ( t ), (13)
where μ is the step size factor.

Specifically, the LMS algorithm uses a stochastic gradient 
descent (SGD) algorithm to update g (i + 1)

l ( t ). At each adapta‑
tion moment, the gradient of the cost function is calculated 
from the difference between the reconstructed and real inter‑
ference signals and multiplied by an appropriate step size fac‑
tor μ. It is worth mentioning that when x ( t ) is large, the LMS 
algorithm suffers from a problem of gradient noise amplifica‑
tion. To overcome this difficulty and achieve a balance be‑
tween convergence speed and steady-state error, the updated 
equation in the proposed RF interference cancellation algo‑
rithm is

g (i + 1)
l ( t ) = g (i )

l ( t ) + é

ë

ê
êê
ê μ

ρ + x2 ( t )
ù

û

ú
úú
ú e(i )

l ( t ) x ( t ), (14)
where ρ is a very small value, preventing the denominator 
from being zero. By introducing μ͂ ( t ) = μ/ [ ρ + x2 ( t ) ], we 
can view NLMS as a variable step-size algorithm. Small x2 ( t ) 
results in large μ͂ ( t ), accelerating the convergence for the 
NLMS algorithm. Conversely, large x2 ( t ) and small μ͂ ( t ) can 
avoid instability and divergence. Thus, by adaptively selecting 
an appropriate step size, NLMS can improve the robustness 
across different input signals.
4 Simulation Results and Discussions

In this section, we conduct simulations to verify the interfer‑
ence cancellation capability of the proposed NLMS algorithm 
and compare it with mainstream algorithms such as SGD and 
recursive least squares (RLS). In the simulation experiments, 
quadrature phase shift keying (QPSK) and 16-quadrature am‑
plitude modulation (16 QAM) are used for modulation. The 
channel models include extended pedestrian A (EPA), ex‑
tended typical urban (ETU), and extended vehicular A (EVA), 
with minimum mean square error (MMSE) employed for chan‑
nel equalization. The rest of the simulation parameters are 
listed in Table 1.

The core idea of the RLS algorithm is to recursively update 
the filter parameters to make the output signal as close to the 
desired signal as possible. The forgetting factor λ determines 
the weight of new and old data during iterations. A higher for‑
getting factor gives more weight to new data, allowing the algo‑
rithm to track rapidly changing system parameters, while a 

lower forgetting factor is suitable for systems with slowly vary‑
ing parameters. The SGD algorithm uses gradient descent to 
update the filter weights, minimizing the mean squared error 
between the desired and actual signals. The SGD algorithm ex‑
hibits the lowest computational complexity among the three al‑
gorithms, followed by the NLMS and RLS algorithms. Given 
an L-tap circuit, the computational complexities of SGD and 
NLMS are O ( L ), while the complexity for RLS is up to 
O ( L2 ). Table 2 shows a detailed analysis of the computational 
complexities with respect to the three algorithms mentioned.

Fig. 3 plots the interference estimation error (IEE) versus 
the number of iterations for different algorithms, where the 
signal-to-interference ratio (SIR) is assumed to be − 60 dB 
and the maximum number of iterations I is set to 1 000. The 
RLS algorithm with λ = 0.99 demonstrates the most excel‑
lent interference reconstruction capability, followed by the 
proposed NLMS algorithm. The SGD with μ = 0.1 exhibits 
the worst interference reconstruction capability. In the SGD 
algorithm, a tradeoff can be observed between the conver‑
gence speed and the IEE. A large step size factor μ acceler‑
ates convergence but leads to a higher IEE, since SGD may 
miss the optimal solution in each update. To reduce the IEE, 
we can select a small step size, which however consumes 
much longer time.

▼Table 1. Simulation parameters

Parameter
Rician factor
Channel taps
Modulation

Subcarrier space (Δf)
FFT length

Communication channel type
Equalizer

SIR
SGD step size (μ)

RLS forgetting factor (λ)
NLMS small value (ρ)

Value
13 dB

10
QPSK, 16 QAM

30 kHz
512

EPA, ETU, EVA
MMSE
−60 dB

0.01, 0.1
0.99, 0.9

0.001
16 QAM: 16-quadrature amplitude 

modulation 
EPA: extended pedestrian A 
ETU: extended typical urban 
EVA: extended vehicular A 
FFT: fast Fourier transform 

MMSE: minimum mean square error 
NLMS: normalized least mean square 
QPSK: quadrature phase shift keying 
RLS: recursive least squares 
SGD: stochastic gradient descent 
SIR: signal-to-interference ratio

▼Table 2. Computational complexity of SGD, NLMS, and RLS algorithm[29]

Algorithm
SGD

NLMS
RLS

Number of Additions
per Iteration

L + 1
2L + 1
L2 + L

Number of Multiplications
per Iteration

2L

3L + 50
2L2 + 3L + 50

NLMS: normalized least mean square 
RLS: recursive least squares 

SGD: stochastic gradient descent
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The SGD algorithm with μ = 0.1 converges to an IEE of 
around −6 dB after 120 iterations. When the step size is re‑
duced to 0.01, the SGD algorithm achieves a lower IEE of 
−7 dB at the cost of a slower convergence speed, i.e., 780 it‑
erations. The NLMS can better handle this tradeoff and halves 
the iteration time. For the RLS algorithm, setting the forgetting 
factor to λ = 0.99 allows for more accurate interference recon‑
struction, yielding the lowest IEE. However, it does so at the 
cost of the greatly increased computational complexity O ( L2 ). 
In contrast, the proposed NLMS algorithm provides compa‑
rable interference reconstruction capability while keeping a 
low computational complexity O ( L ).

Next, we simulate the bit error rate (BER) and throughput 
of the ISAC system with the proposed NLMS algorithm under 
different modulation types and channels to evaluate its com‑
munication performance. As shown in Fig. 4, the BER of the 
ISAC system gradually decreases with increasing SNR. The 
EPA channel, with fewer multi-paths and lower average 
power attenuation per path compared to the ETU and EVA 
channels, results in the lowest BER. Compared to QPSK, the 
higher modulation order of QAM means that symbols are 
placed closer to each other in the constellation diagram, mak‑
ing the communication signal more sensitive to noise and re‑
sulting in a higher BER at the same SNR. Additionally, we 
present the throughput simulation results under different 
channel models and modulation types in Fig. 5. It can be ob‑
served that the ISAC system exhibits similar throughput 
across different channel models, with EPA and EVA yielding 
the highest and lowest throughput, respectively. Furthermore, 
16 QAM achieves higher throughput than QPSK due to its 
higher modulation order.

5 Conclusions and Future Work
In this work, we investigate the co-site interference problem 

in 5G NR ISAC systems. We model an OFDM-based ISAC 
system and provide a detailed overview of the corresponding 
ISAC signal processing flow. By modeling and analyzing the 
co-site interference in a single BS ISAC scenario, we propose 
an RF domain interference cancellation algorithm called the 
NLMS algorithm. By substituting μ for μ͂ ( t ) = μ/ [ ρ + x2 ( t ) ], 

▲ Figure 4. BER versus SNR under EPA, ETU, EVA channels, with 
two modulation types: QPSK and 16 QAM

BER: bit error rate 16 QAM: 16-quadrature amplitude modulation EPA: extended pedestrian A 

ETU: extended typical urban EVA: extended vehicular A QPSK: quadrature phase shift keying SNR: signal-to-noise-ratio

▲Figure 5. Throughput versus SNR under EPA, ETU, EVA channels, 
with two modulation types: QPSK and 16QAM

16 QAM: 16-quadrature amplitude modulation EPA: extended pedestrian A ETU: extended typical urban 
EVA: extended vehicular A QPSK: quadrature phase shift keying SNR: signal-to-noise-ratio
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the NLMS algorithm could adaptively adjust the step size fac‑
tor, accelerating the convergence at a low cost of computing. 
Simulation results and analysis demonstrate that the NLMS al‑
gorithm could effectively cancel RF domain co-site interfer‑
ence. It also achieves a good balance among the iterations re‑
quired for convergence, the computational complexity, and the 
capability of interference reconstruction. Compared to the 
RLS algorithm, the NLMS algorithm demonstrates similar in‑
terference reconstruction capability while maintaining a lower 
computational complexity O ( L ). In comparison to the SGD al‑
gorithm, it can better handle the tradeoff between the conver‑
gence speed and the IEE. Thus, the NLMS algorithm is a 
promising solution to co-site interference cancellation in ISAC 
systems. Our future work will focus on the joint design of more 
advanced interference cancellation algorithms in both the RF 
domain and baseband domain.
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Abstract: A cooperative passive sensing framework for millimeter wave (mmWave) communication systems is proposed and demonstrated in a 
scenario with one mobile signal blocker. Specifically, in the uplink communication with at least two transmitters, a cooperative detection method 
is proposed for the receiver to track the blocker’s trajectory, localize the transmitters and detect the potential link blockage jointly. To facilitate 
detection, the receiver collects the signal of each transmitter along a line-of-sight (LoS) path and a non-line-of-sight (NLoS) path separately via 
two narrow-beam phased arrays. The NLoS path involves scattering at the mobile blocker, allowing its identification through the Doppler fre‑
quency. By comparing the received signals of both paths, the Doppler frequency and angle-of-arrival (AoA) of the NLoS path can be estimated. 
To resolve the blocker’s trajectory and the transmitters’ locations, the receiver should continuously track the mobile blocker to accumulate suffi‑
cient numbers of the Doppler frequency and AoA versus time observations. Finally, a gradient-descent-based algorithm is proposed for joint de‑
tection. With the reconstructed trajectory, the potential link blockage can be predicted. It is demonstrated that the system can achieve decimeter-
level localization and trajectory estimation, and predict the blockage time with an error of less than 0.1 s.
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1 Introduction

Due to the short wavelength, millimeter-wave (mmWave) 
wireless communication is fragile to link blockage[1–3]. 
Fortunately, with the development of wireless sensing 
techniques, it is feasible to design a robust mmWave 

communication system that can predict the link blockage, de‑
tect backup signal propagation paths, and mitigate the impact 
of signal-to-noise ratio (SNR) loss via predictive scheduling.

There have been a number of research efforts on blockage 
prediction via out-of-band sensors[4–6] or in-band channel infor‑
mation[7–11]. For example, a camera was proposed to sense the 
communication environment and predict the mmWave link 
blockage via deep learning algorithms in Refs. [4–5]. A light 
detection and ranging (LiDAR) assisted proactive blockage pre‑
diction scheme was proposed in Ref. [6]. The use of out-of-band 
sensors not only increases the cost of communication systems, 
but also raises privacy issues, especially in indoor communica‑
tion scenarios. With the in-band channel information, the varia‑
tion of received signal strength (RSS) was proposed to predict 

blockage in Refs. [7, 11], where deep learning algorithms were 
developed to track the RSS variation patterns right before block‑
age. It was found in Ref. [8] that the diffraction effects of 
mmWave signals could be exploited in blockage prediction. 
Moreover, a protective beam was proposed in Ref. [9] to monitor 
the Doppler effect in the communication environment, so that 
potential link blockage can be forecasted. However, none of the 
above in-band sensing methods can track the trajectory of mo‑
bile blockers. Without the trajectory, these methods may not 
provide sufficient warning time before blockage, or they may 
lead to a large false alarm probability. In our preliminary 
study[12], an mmWave blockage prediction method via passive 
sensing architecture was proposed, which could predict 90% of 
the line-of-sight (LoS) blockage with a sensing time of 1.4 s. It 
assumed location knowledge of the transmitter and receiver, as 
well as the constant velocity of the mobile blocker.

In fact, passive sensing is a promising approach to facilitat‑
ing simultaneous sensing and data communication with half-
duplexing transceivers[13]. By comparing the received signals of 
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reference and surveillance channels, multi-antenna passive 
sensing techniques can detect the direction, distance and the 
raised Doppler frequency of a mobile target. It has been used 
for localization or trajectory tracking via WiFi signals[14] or long-
term evolution (LTE) downlink signals[15]. To further improve 
the tracking accuracy, multiple signal transmitters or sensing re‑
ceivers can be adopted to detect the Doppler frequency in dif‑
ferent dimensions. For example, a handwriting tracking method 
via cooperative passive sensing of two receivers was proposed 
in Ref. [16], where the accuracy of handwriting reconstruction 
was at the millimeter level. However, all these works assumed 
knowledge of the locations of signal transmitters and sensing re‑
ceivers, which might not be easily obtained in mobile communi‑
cation systems, especially in indoor scenarios.

In this paper, we would like to address the above issue by 
proposing a cooperative passive sensing method for joint trajec‑
tory tracking and device localization. Specifically, at least two 
uplink transmitters simultaneously transmit uplink signals to 
one receiver in different frequency bands, and there is one mo‑
bile blocker in the communication environment. The receiver 
adopts two narrow beams to receive the uplink signal of each 
transmitter. One beam is aligned with the transmitter directly, 
and the other is aimed at the mobile blocker. Thus, the signal of 
LoS path is received by the former beam, and the scattered sig‑
nal from the mobile blocker, which is with non-zero Doppler fre‑
quencies, is received by the latter one. By comparing the sig‑
nals of the above two beams, the Doppler frequencies and 
angles-of-arrival (AoA) of the mobile blocker can be continu‑
ously observed. Accumulating the above observations from two 
transmitters, we find the transmitters’ locations and the 
blocker’s trajectory can be jointly detected via a proposed 
gradient-descent-based algorithm. It is demonstrated that the 
system can achieve decimeter-level localization and trajectory 
estimation, and predict the blockage time with an error of less 
than 0.1 s.

The remainder of this paper is organized as follows. In Sec‑
tion 2, an overview of the system is provided. In Section 3, the 
signal processing for passive sensing is introduced. Section 4 in‑
troduces the algorithms for joint trajectory tracking and trans‑
mitter localization, followed by the method of blockage predic‑
tion. The experiment results and analysis are provided in Sec‑
tion 5. Finally, conclusions are drawn in Section 6.
2 System Overview

In this paper, a trajectory tracking and blockage prediction 
method is proposed for mmWave uplink communications. With‑
out a priori location knowledge of the transmitters and receiver, 
the proposed method can simultaneously track the trajectory of 
a mobile signal blocker and detect the locations of the transmit‑
ters with respect to the receiver. As a result, the potential block‑
age of the LoS path can be predicted. The overall system archi‑
tecture is illustrated in Fig. 1. The proposed system consists of 
one mmWave receiver and at least two transmitters, where the 

receiver receives signals from all transmitters simultaneously 
by frequency division. The two transmitters are referred to as 
transmitters 1 and 2, and their orthogonal communication bands 
are referred to as bands 1 and 2, respectively. The transmitters 
and receiver can be the user equipment (UE) and base station 
(BS) of uplink communications, respectively.

Each mmWave transmitter delivers an information-bearing 
signal via a transmission beam. The signal arrives at the re‑
ceiver via both the LoS path and the non-line-of-sight (NLoS) 
path scattered at the mobile blocker, as illustrated in Fig. 1. 
The receiver has at least two RF chains, each with a phased 
array. One of the phased arrays generates a receiving beam, 
namely a surveillance beam, to capture the NLoS signal in 
both frequency bands. Due to the mobility of the blocker, 
this receiving beam should periodically sweep the surround‑
ing region. The other phased array generates two receiving 
beams towards the two transmitters, respectively. They could 
capture the LoS signals of the two transmitters in two fre‑
quency bands with a high signal-to-noise ratio (SNR), respec‑
tively. The LoS paths from the two transmitters are referred 
to as reference channels 1 and 2, and their receiving beams 
are referred to as  reference beams 1 and 2, respectively. Ad‑
ditionally, the signal propagation paths from both transmit‑
ters and scattered by the mobile blocker are called surveil‑
lance channels 1 and 2, respectively.

By comparing the signals received from a pair of reference 
and surveillance channels, the Doppler frequencies raised by 
the mobile blocker can be detected at a particular AoA. Due to 
the carrier frequency offset (CFO) and the sampling clock fre‑
quency offset (SFO) between the transmitter and the receiver, 
the time-of-fly (ToF) measurement of reference channels or sur‑
veillance channels could be difficult. It is therefore infeasible to 
localize the mobile blocker at the receiver via a single capture 
of the blocker. Instead, the Doppler frequency and AoA of the 
mobile blocker are successively tracked in the proposed 
method, so that the trajectory of the mobile blocker and the lo‑

▲Figure 1. Overview of the integrated sensing and communication system
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cations of the two transmitters can be jointly detected with a suf‑
ficient number of observations.
3 Signal Processing of Cooperative Passive 

Sensing

3.1 Signal Model
It is assumed that the transmission and receiving beams of 

the two reference channels have been aligned via the existing 
method, e. g., exhaustive beam search. On the other hand, the 
surveillance beam switches sequentially and periodically 
among Q-directions, denoted as Φ = {ϕ1,ϕ2,⋯,ϕQ}. In each 
direction, signals of both frequency bands are received via the 
surveillance beam for a duration of Tb s. Thus, it takes the sur‑
veillance beam Td = QTb s to complete a sweeping period.

In the k-th sweeping period (∀k ), let sm,k,q( t) be the transmit 
baseband signal of the m-th transmitter (m = 1,2) when the sur‑
veillance beam is at the direction ϕq, and the received signal 
via the m-th reference beam in the m-th frequency band can be 
written as :

y ref
m,k,q( t) = αref

m,k,q sm,k,q( t - τref
m,k,q ) + nref

m,k,q( t) , 0 ≤ t ≤ Tb, (1)
where αref

m,k,q and τref
m,k,q denote the complex gain and delay of the 

LoS path, and nref
m,k,q( t) denotes the superposition of noise and 

NLoS echoes. As a remark, the scattered signal of sm,k,q( t) may 
also be received by the reference beam.

Simultaneously, the received signal of the surveillance beam 
in the m-th frequency band, denoted as y sur

m,k,q( t), includes the 
scattered signals from the mobile blocker and static scattering 
clusters. Thus,

y sur
m,k,q( t) = α tar

m,k,q( t) sm,k,q( t - τ tar
m,k,q( t) ) e- j2πf tar

m,k,q( )t t +
∑l = 1

Lm,q αl
m,k,q sm,k,q( )t - τl

m,k,q + nsur
m,k,q( t) , 0 ≤ t ≤ Tb, (2)

where α tar
m,k,q( t), τ tar

m,k,q( t) and f tar
m,k,q( t) denote the time-varying com‑

plex gain, delay and Doppler frequency of the surveillance chan‑
nel, respectively, Lm,q denotes the number of NLoS paths via 
static scattering clusters, αl

m,k,q and τl
m,k,q are the complex gain 

and delay of the l-th one, and nsur
m,k,q( t) denotes the noise. As a re‑

mark, the signal from the LoS path may also be received by the 
surveillance beam, which can be treated as a special static scat‑
tering cluster in the second term of the above equation.

The received signals from both reference and surveillance 
beams in the two frequency bands are sampled with a period Ts, which can be expressed by y ref

m,k,q[n] = y ref
m,k,q(nTs ) and y sur

m,k,q[n] =
y sur

m,k,q(nTs ), where n = 1,2,⋯,Tb /Ts, and m = 1,2, q =1,2,…,Q. 
Note that the signal components in y sur

m,k,q[n] with non-zero Dop‑
pler frequencies from the moving blocker may be overwhelmed 
by the strong scattered signals with zero Doppler frequency. 

Specifically, in Eq. (2), the first term on the right side is far 
smaller than the second term. This can disrupt the estimation of 
the Doppler frequency. Hence, the least-square-based (LS-
based) clutter cancellation in Ref. [17] is applied to suppress 
the signal components with zero Doppler frequency in y sur

m,k,q[n]. 
The surveillance signal after clutter cancellation is denoted as 
ŷ sur

m,k,q[n].
3.2 Doppler Frequency and AoA Estimation

The Doppler frequency estimation in passive sensing is 
based on the cross-ambiguity function (CAF) between the refer‑
ence signals and surveillance signals. Particularly, the CAF of 
the received signals in the m-th frequency band, k-th sweeping 
period, and q-th surveillance beam’s direction is defined as

Rm,k(q, fd ) = max
τm,k,q

 ∑n = 1
N0 ŷ sur

m,k,q[ ]n {y ref
m,k,q[n - τm,k,q ]}

*

ej2πfdnTs,
(3)

where { . }* is the complex conjugate; N0 = Tb /Ts denotes the 
number of samples when the surveillance beam is in one direc‑
tion. Since we only focus on the estimation of the Doppler fre‑
quency, the delay τm,k,q is not considered a parameter of the 
CAF. There should be a peak value of Rm,k(q, fd ) at fd =
f tar

m,k,q(kN0Ts ). Thus, Doppler frequencies of the mobile blocker 
could be detected by finding the peak values of Rm,k(q, fd ). As a 
remark, note that estimating the Doppler frequency in Eq. (3) 
does not request a priori knowledge of the path gains α tar

m,k,q and αl
m,k,q.There might be more than one peak value of Rm,k(q, fd ) in the 

k-th sweeping period. This is because there might be multiple 
scattering points on the blocker with different velocities. The 
scattering between the blocker and the surrounding clutters 
would also generate weak peaks on Rm,k(q, fd ). An adaptive-

threshold-based method is adopted to detect the Doppler fre‑
quencies with the dominant receiving power from the CAF. 
First, the threshold for the Doppler frequency fd in the q-th sur‑
veillance beam’s direction can be calculated as:

Tm,k(q, fd ) = γ
2W + 1 ∑

p = -WT

WT

Rm,k(q, fd + pΔf ) , (4)
where WT is the half length of training cells, γ > 1 is a scaling 
factor for the detection threshold, and Δf = 1/ (N0Ts ) is the 
resolution of the Doppler frequency. Thus, in the k-th sweeping 
period, a Doppler frequency fd is detected in the q-th surveil‑
lance beam’s direction when Rm,k(q, fd ) ≥ Tm,k(q, fd ).

Note that the scattered signal from the mobile blocker might 
be captured by multiple beam directions, leading to a false 
alarm in the AoA detection. In the proposed system, we treat 
the surveillance beam’s direction maximizing the CAF as the 

31



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

YU Chao, LYU Bojie, QIU Haoyu, WANG Rui 

Special Topic   Trajectory Tracking for MmWave Communication Systems via Cooperative Passive Sensing

estimated AoA of each sweeping period. Particularly, denoting 
f ͂m,k and ϕ͂k as the estimated Doppler frequency and AoA in the 
k-th sweeping period, we have

( f ͂m,k, q͂m,k ) = argmax
fd,  q

Rm,k( )q, fd

s.t.    Rm,k( )q, fd ≥ Tm,k( )q, fd , (5)
and ϕ͂k = ϕq͂m,k, respectively. Note that the AoA of blockers is in‑
dependent of the frequency bands. Finally, we define the mea‑
sured feature vector zk of the k-th sweeping periods as 
zk = [ ϕ͂k, f ͂1,k, f ͂2,k ]T. (6)

4 Localization and Blockage Prediction
In this section, a joint estimation method is proposed to detect 

the positions of the two transmitters and the trajectory of the mo‑
bile blocker based on the measured AoAs and Doppler frequen‑
cies in a number of sweeping periods. The geometric relation 
among the two transmitters, the receiver and the mobile blocker 
is illustrated in Fig. 2. Without loss of generality, the coordinates 
of the receiver and the two transmitters are represented by vec‑
tors pRX = [0,0] T, pTX1 = [d,0] T, pTX2 = [ xTX2,yTX2 ]

T, respec‑
tively, and the coordinates of the mobile blocker in the k-th 
sweeping period are represented by  pk = [ xk,yk ]T. There is no a 
priori knowledge of the locations of the two transmitters at the re‑
ceiver. Thus, d, xTX2 and yTX2 are unknown.

To facilitate the joint estimation, it is assumed that the two 
transmitters and a receiver have sent and received signals to 
and from each other, so that the angles-difference-of-arrival 
(ADoA) between them have been estimated via the spatial 
smoothing multiple signal classification (MUSIC) algorithm[18]. 
Thus, the angles φRX and φTX1 in Fig. 2 are known at the re‑
ceiver. Note that xTX2 and yTX2 are functions of d, φRX and 
φTX1, the joint estimation of d and  pk, where k = 1,2,3,…, is 

elaborated in this section, followed by the blockage prediction. 
In the following, we first elaborate on the motion model of the 
mobile blocker.
4.1 Motion Model

According to the geometric relation, ADoA φRX and φTX1 can 
be expressed in terms of the coordinates of the two transmitters 
and the receiver as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

φRX = cos-1 ( )pTX1 - pRX T( )pTX2 - pRX

 pTX1 - pRX  pTX2 - pRX

φTX1 = cos-1 ( )pRX - pTX1
T( )pTX2 - pTX1

 pRX - pTX1  pTX2 - pTX1  . (7)
Since the sweeping period is very short, it can be approxi‑

mated that the mobile blocker is moving with a constant veloc‑
ity in a sweeping period. Hence, the trajectory of the mobile 
block can be expressed as:
pk = pk - 1 + vk - 1Td = p1 + ∑n = 1

k - 1 vnTd , (8)
where vk = [ vx ; k, vy ; k ]T is the vector of velocity in the k-th 
sweeping period; vx ; k and vy ; k denote the velocity components 
in the x-axis and y-axis, respectively.

Hence, the AoA of the surveillance channel in the k-th 
sweeping period ϕR ; k can be written as

ϕR ; k = cos-1 pk

 pk

= cos-1 p1 + ∑n = 1
k - 1 vn Td

 p1 + ∑n = 1
k - 1 vn Td  . (9)

Moreover, the Doppler frequency of the m-th surveillance 
channel is given by

fd ; m,k = 1
λm ( pk - pTX

m

 pk - pTX
m

+ pk - pRX

 pk - pRX ) T
vk , (10)

where λm is the carrier frequency of the m-th transmitter.
4.2 Joint Localization and Trajectory Estimation

It can be observed from the above motion model that, given 
the distance d, the initial position p1 and the velocity vectors 
v1,v2,…,vk of the blocker, the AoAs and Doppler frequencies of 
all the sweeping periods can be calculated according to Eqs. (9) 
and (10). Let xk = [d, pT1 , vT1 , vT2 ,⋯,vT

k ]
T
 be the vector of all the 

motion parameters to be estimated in the first k sweeping peri‑
ods; hk = [ϕR ; k, fd ; 1,k, fd ; 2,k ]

Tis the true feature vector of k-th 
sweeping period with motion parameters xk; H (xk ) =
[ h (x1 ) , h (x2 ) ,⋯, h (xk ) ] T and Zk = [ z1, z2,⋯, zk ]

T are the 
aggregation of the true feature vectors and measured feature 
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φTX 1
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▲Figure 2. Illustration of the blocker tracking system in the coordinate 
system with two transmitters
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vectors, respectively. The trajectory of the mobile blocker and 
the positions of transmitters can be estimated via minimizing 
the difference between true features and the measured ones in 
the first K sweeping periods. Thus,
x̂K = argmin 

xK
tr{W [ZK - H (xK ) ] T[ZK - H (xK ) ]}, (11)

where tr{.} denotes the matrix trace. W = diag (α1,α2,α3 ) is 
the weighting matrix, and α1,α2, and α3 denote the weights of 
different features, respectively.

Although the above problem is nonlinear, we can find local 
optimal solutions by the classical Levenberg-Marquardt (LM) 
optimization algorithm[19–20] with multiple initial solutions. Par‑
ticularly, we first define function f (xK ) = tr{W [ZK -
H (xK ) ] T[ZK - H (xK ) ]}, and let x0

K,1, x0
K,2, ⋯, x0

K,S be the S 
initial estimations of the motion parameters xK. In the l-th itera‑
tion ( l = 1,2,3,⋯), the estimations of motion parameters xK are 
updated as x l

K,s = x l - 1
K,s + J (x l - 1

K,s )Δ, s = 1,2,3,⋯, S, where 
J (xK ) = ∂f ( )xK∂xK

 is the Jacobian matrix and Δ is the step size. 
Finally, let L be the total number of iterations, and the esti‑
mated motion parameters are given by
x̂K = argmin

xK ∈ { }xL
K,1,xL

K,2, …, xL
K,S

 f (xK ). (12)

4.3 Blockage Detection
Based on the estimated trajectory and velocities of the 

blocker in the K sweeping periods, it is feasible to predict 
whether and when the LoS between transmitters and the re‑
ceiver would be blocked. Assuming 
that the mobile blocker keeps the 
average velocity of the previous n 
sweeping periods, the predicted tra‑
jectory p ( t) of the blocker after the 
K-th sweeping period can be ex‑
pressed as
p ( t) = p̂K + v̄t, (13)

where v̄ = ∑k = K - n + 1
K v̂k is the aver‑

age velocity in previous n sweeping 
periods, and v̂k is the estimated ve‑
locity of the blocker in the k-th 
sweeping period according to 
Eq. (12).

Let bm ∈ {0,1}, m = 1,2, be the 
blockage indicator, where bm = 1 
denotes that the m-th LoS will be 

blocked in the future and bm = 0, otherwise. We have

bm = ì
í
î

ïï
ïï

1,  det ( )[ ]v̄, pRX - p̂K det ( )[ ]v̄, pTX
m - p̂K < 0

0,   otherwise . (14)
Moreover, let t̂m be the estimated blockage time, after which 

the link blockage will happen. Let μpTX
m  be the position of the 

intersection point in the m-th LoS path, where μ ∈ [0,1]. The 
blockage time t̂m and μ can be calculated by

é

ë
êêêê

ù

û
úúúú

μ

t̂m
= [ pTX

m ,- v̄ ]-1
p̂K, (15)

where det ( [ pTX
m ,- v̄ ] ) ≠ 0.

5 Experiment Results and Analysis
In the experiments, the implementation of the proposed sys‑

tem is shown in Fig. 3. Both transmitters 1 and 2 are imple‑
mented with one NI USRP-2954R connected with one Sivers 
60 GHz phased array. In both transmitters, the transmitting 
signal with a bandwidth of 1 MHz consists of a training se‑
quence and an orthogonal frequency division multiplexing 
(OFDM) -modulated data payload. The carrier frequencies of 
transmitters 1 and 2 are 60.98 GHz and 60.985 GHz, and the 
width of transmitting beams are both 90°. At the receiver, two 
Sivers 60 GHz phased arrays, with a clock of 45 MHz, are con‑
nected to one NI USRP-2954R. One of the phased arrays 
adopts a two-lobe receiving beam towards transmitters 1 and 
2, respectively, which receives signals of reference channels 1 
and 2 in two different frequency bands. The surveillance beam 
is implemented via the other phased array, covering both fre‑
quency bands. Signals from two transmitters can be separated 
at the USRP of the receiver via two bandpass filters. Moreover, 

▲Figure 3. Block diagram of system implementation
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the surveillance beam is switched periodically among Q=4 di‑
rections, which are 40°, 27°, 18° and 10°, with a beamwidth of 
about 10° . The sensing duration of one direction is Tb=50 ms 
and the duration of one sweeping period is Td = 200 ms which 
implies the minimum detectable speed is around 0.025 m/s. 
The sampling frequency at the baseband is 10 MHz.

The experiments are conducted in a laboratory environment 
with rich scattering clusters, e.g., displays and metallic cabinets. 
The placement of the two transmitters and the receiver platform 
is illustrated in Fig. 4, where all of the phased arrays are placed 
at a height of 1.5 m. Taking the receiver as the origin, the coordi‑
nates of transmitters 1 and 2 are pTX1 = [2.7 m, 0] T and pTX2 =
[1.8 m,-1.4 m ] T. A volunteer is walking in this region as a mo‑
bile blocker. A depth camera system (ZED) is deployed behind 
the receiver to record the true trajectory of the blocker. It is syn‑
chronized with the receiver at the millisecond level. Since differ‑
ent parts of the body have different trajectories, we extract the 
trajectory information of 21 key points of the human body from 
the depth camera[21] with centimeter-level accuracy, and repre‑
sent the real trajectory of the human body by that of the “neck” 
keypoint. This is because the key point of “neck” is at the same 
height as the phased array.
5.1 Detection of Doppler Frequency and AoA

An example of the Doppler-angle spectrograms of two surveil‑
lance channels in one sweeping period is shown in Fig. 5. In 
both spectrograms, the strengths of the signal components versus 
beam directions (AoAs) and Doppler frequencies are illustrated 
by colors. It can be observed that a Doppler frequency of 140 Hz 
is detected in surveillance channel 1, and a Doppler frequency 
of 300 Hz is detected in surveillance 2. Thus, the same move‑
ment of the blocker would generate different Doppler frequen‑
cies at the two surveillance channels due to different locations of 
the transmitters. It can also be observed that there are multiple 
peaks of Doppler frequencies in Fig. 5 (b) that are caused by dif‑
ferent movements of scattering points on the human body, e.g., 

350 Hz, 300 Hz and 270 Hz. According to Eq. (5), we will 
choose the Doppler frequency with the highest signal strength as 
the feature of the sweeping period. As a result, since the Dop‑
pler frequencies are mainly captured by the second beam direc‑
tion, the AoA of the sweeping period is 27°.

All detected Doppler frequencies and AoAs versus time of a 
trajectory are shown in Fig. 6. It can be observed that there is 
no moving target in the time interval [0, 1.2 s], since no signifi‑
cant Doppler frequency can be detected. The Doppler frequen‑
cies of surveillance channel 1 is consistently greater than that 
of surveillance channel 2, and the Doppler frequency of the first 
surveillance channel is close to 0 in [2.8 s, 3.2 s]. This is be‑
cause the projection of velocity along surveillance channel 2 is 
more significant according to the locations of both transmitters. 
Furthermore, since the estimation error of AoAs could be large, 
it is necessary to smooth AoAs via polynomials as shown by the 
blue line. After the detection of Doppler frequencies and AoAs 
of the two surveillance channels, the trajectory of the blocker 
and the positions of transmitters can be obtained by solving the 
problem in Eq. (12).

TX 1TX 2Reference 2

Reference 1

Camera

USRP
Blocker

USRP

RX(Reference)RX(Surveillance)

▲Figure 4. Illustration of the experiment environment

▲ Figure 5. Doppler frequencies of 4 beams (beams 1 to 4 indicate 
angles-of-arrival of 40°, 27°, 18° and 10°) in a sweeping period
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5.2 Trajectory Estimation and Transmitter’s Localization
In the experiments, it is estimated that the ADoAs are φRX =

39o and φRX = 58o. Hence, the locations of the two transmit‑
ters and the trajectory of the mobile blocker can be estimated 
jointly according to the above estimated Doppler frequencies 
and AoAs. The trajectories of the two trails are illustrated in 
Figs. 7(a) and 7(b), respectively, where the red curve is the 
true trajectory of the blocker recorded by the ZED and the 
green one is the estimated one. Moreover, the true and esti‑
mated locations of the two transmitters are also differentiated 
by colors. It can be observed that the localization errors of the 
two transmitters are within 0.2 m. The estimated trajectory is 
almost parallel to the real trajectory, but with an offset in the 
x-axis. The average error in the blocker’s trajectory and raw 
AoA estimation is 0.39 m and 7.8 degrees, respectively, with 
corresponding mean squared errors of 0.482 and 9.42. Never‑
theless, the estimated trajectory is sufficiently accurate in the 
blockage prediction.
5.3 Blockage Prediction

The prediction of blockage time, which measures the remain‑
ing time duration until link blockage, for the above two trajecto‑
ries is illustrated in Fig. 8. Due to the placement of transmitters 
and the receiver, the link blockage will happen in reference 
channel 1. It can be observed that the error of blockage time t̂1 is less than 0.1 s when the blockage time is less than 0.6 s. 
Moreover, larger blockage time leads to larger prediction errors. 
This is due to the time-varying velocity of the volunteer.
6 Conclusions

In the paper, a method that employs passive sensing tech‑
niques to jointly estimate transmitter positions and blocker tra‑
jectories is proposed for mmWave communication systems, so 
that the link blockage and the blockage time can be predicted. 
The method can be deployed in the uplink transmission sce‑

nario with one mobile blocker and at least two transmitters. 
Without a priori knowledge of the positions of transmitters, the 
trajectory of the mobile blocker is estimated by tracking its Dop‑
pler frequencies and AoAs in a number of sweeping periods, 

▲Figure 6. Estimated Doppler frequencies of two surveillance channels 
and AoAs

▲ Figure 7. Estimated trajectory of the blocker and the positions of 
transmitters

(a) Trajectory 1

(b) Trajectory 2

▲Figure 8. Error of predicted blockage time t̂1
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where a gradient-descent algorithm is proposed to suppress the 
estimation error. It is demonstrated that the system can achieve 
decimeter-level localization and trajectory estimation, and the 
blockage time prediction error is within 0.1 s when the block‑
age time is less than 0.6 s.

While this paper considers the tracking of a single blocker, 
the proposed system has the potential to identify and track mul‑
tiple blockers with distinct Doppler frequencies or AoAs. More‑
over, it is possible to improve the detection accuracy of the dis‑
tances between the transmitters and the receiver by observing a 
number of trajectories of a single blocker in different trials. 
Hence, the detection accuracy of a single blocker’s trajectory 
could also be further improved. We would like to investigate the 
above extensions in our future research.

References
[1] BAI T Y, HEATH R W. Coverage and rate analysis for millimeter-wave cel‑

lular networks [J]. IEEE transactions on wireless communications, 2015, 14
(2): 1100–1114. DOI: 10.1109/TWC.2014.2364267

[2] MACCARTNEY G R, RAPPAPORT T S, RANGAN S. Rapid fading due to 
human blockage in pedestrian crowds at 5G millimeter-wave frequencies 
[C]//IEEE Global Communications Conference. IEEE, 2017: 1 – 7. DOI: 
10.1109/GLOCOM.2017.8254900

[3] RAPPAPORT T S, XING Y C, KANHERE O, et al. Wireless communica‑
tions and applications above 100 GHz: opportunities and challenges for 6G 
and beyond [J]. IEEE access, 2019, 7: 78729 – 78757. DOI: 10.1109/
ACCESS.2019.2921522

[4] CHARAN G, ALRABEIAH M, ALKHATEEB A. Vision-aided 6G wireless 
communications: blockage prediction and proactive handoff [J]. IEEE trans‑
actions on vehicular technology, 2021, 70(10): 10193 – 10208. DOI: 
10.1109/TVT.2021.3104219

[5] YANG Y W, GAO F F, TAO X M, et al. Environment semantics aided wire‑
less communications: a case study of mmWave beam prediction and block‑
age prediction [J]. IEEE journal on selected areas in communications, 2023, 
41(7): 2025–2040. DOI: 10.1109/JSAC.2023.3280966

[6] WU S Y, CHAKRABARTI C, ALKHATEEB A. Proactively predicting dy‑
namic 6G link blockages using LiDAR and in-band signatures [J]. IEEE 
open journal of the communications society, 2023, 4: 392 – 412. DOI: 
10.1109/OJCOMS.2023.3239434

[7] WU S Y, ALRABEIAH M, CHAKRABARTI C, et al. Blockage prediction 
using wireless signatures: deep learning enables real-world demonstration 
[J]. IEEE open journal of the communications society, 2022, 3: 776– 796. 
DOI: 10.1109/OJCOMS.2022.3162591

[8] FALLAH DIZCHE A, DUEL-HALLEN A, HALLEN H. Early warning of 
mmWave signal blockage using diffraction properties and machine learning 
[J]. IEEE communications letters, 2022, 26(12): 2944–2948. DOI: 10.1109/
LCOMM.2022.3204636

[9] HERSYANDIKA R, MIAO Y, POLLIN S. Guard beam: protecting mmWave 
communication through In-band early blockage prediction [C]//IEEE Global 
Communications Conference. IEEE, 2022: 4093 – 4098. DOI: 10.1109/
GLOBECOM48099.2022.10001163

[10] TANG R S, QI C H, SUN Y. Blockage prediction and fast handover of base 
station for millimeter wave communications [J]. IEEE communications let‑
ters, 2023, 27(8): 2142–2146. DOI: 10.1109/LCOMM.2023.3289581

[11] ALKHATEEB A, BELTAGY I, ALEX S. Machine learning for reliable 
mmwave systems: blockage prediction and proactive handoff [C]//Global 
Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018: 
1055–1059. DOI: 10.1109/GlobalSIP.2018.8646438

[12] YU C, SUN Y F, LUO Y, et al. MmAlert: mmWave link blockage predic‑
tion via passive sensing [J]. IEEE wireless communications letters, 2023, 12

(12): 2008–2012. DOI: 10.1109/LWC.2023.3304320
[13] COLONE F, FILIPPINI F, PASTINA D. Passive radar: past, present, and 

future challenges [J]. IEEE aerospace and electronic systems magazine, 
2023, 38(1): 54–69. DOI: 10.1109/maes.2022.3221685

[14] SUN H B, CHIA L G, RAZUL S G. Through-wall human sensing with WiFi 
passive radar [J]. IEEE transactions on aerospace and electronic systems, 
2021, 57(4): 2135–2148. DOI: 10.1109/taes.2021.3069767

[15] RAJA ABDULLAH R S A, SALAH A A, ISMAIL A, et al. Experimental in‑
vestigation on target detection and tracking in passive radar using long-term 
evolution signal [J]. IET radar, sonar & navigation, 2016, 10(3): 577–585. 
DOI: 10.1049/iet-rsn.2015.0346

[16] YU C, LUO Y, CHEN R Q, et al. Passive handwriting tracking via weak 
mmWave communication signals [J]. IEEE wireless communications letters, 
2024, 13(3): 874–878. DOI: 10.1109/LWC.2023.3348875

[17] TAN D K P, SUN H, LU Y, et al. Passive radar using global system for mo‑
bile communication signal: theory, implementation and measurements [J]. 
IEE proceedings, radar, sonar and navigation, 2005, 152(3): 116. DOI: 
10.1049/ip-rsn: 20055038

[18] SUN Y F, LI J, ZHANG T, et al. An indoor environment sensing and local‑
ization system via mmWave phased array [J]. Journal of communications 
and information networks, 2022, 7(4): 383 – 393. DOI: 10.23919/
JCIN.2022.10005216

[19] LEVENBERG K. A method for the solution of certain non-linear problems 
in least squares [J]. Quarterly of applied mathematics, 1944, 2(2): 164 –
168. DOI: 10.1090/qam/10666

[20] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear 
parameters [J]. Journal of the society for industrial and applied mathemat‑
ics, 1963, 11(2): 431–441. DOI: 10.1137/0111030

[21] Stereolabs. Stereolabs docs: API reference, tutorials, and integration [EB/
OL]. [2024-07-07]. https://www.stereolabs.com/docs

Biographies
YU Chao received his BS degree from Qingdao University of Technology, China 
in 2019 and ME degree from the Southern University of Science and Technology 
(SUSTech), China in 2023. He is currently a research assistant with SUSTech. His 
research interests include integrated sensing and communication (ISAC) and pas‑
sive sensing.

LYU Bojie received his BE degree in communication engineering from Southern 
University of Science and Technology (SUSTech), China in 2018, and M.Phil de‑
gree (ranked top 2) in information and communication engineering from Harbin In‑
stitute of Technology, China in 2020. He is currently pursuing his PhD degree in 
mathematics with SUSTech.

QIU Haoyu received his BE degree from the Southern University of Science and 
Technology, China in 2023, where he is currently pursuing his ME degree with 
the Department of Electronic and Electrical Engineering. His research interests 
include wireless sensing, passive mmWave communication and sensing system 
and optimization in the WiFi system.

WANG Rui (wangr@sustech.edu.cn) received his BS degree from the University 
of Science and Technology of China in 2004, and PhD degree in wireless commu‑
nications from The Hong Kong University of Science and Technology, China in 
2008. From 2009 to 2012, he was a senior research engineer with Huawei Tech‑
nologies, Co., Ltd. Since 2012, he has joined Southern University of Science and 
Technology, China as an associate professor. He has research experience in both 
academia and industry. He has authored over 100 papers in top-level IEEE jour‑
nals and flagship international conferences, especially in the area of wireless radio 
resource optimization and interference management. He has contributed over 20 
US patent applications and over 100 Chinese patent applications (50 of them have 
been granted).

36



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

DU Ruolin, WEI Zhiqiang, YANG Zai 

Integrated Sensing and Communication: Who Benefits More?   Special Topic

Integrated Sensing and CommunicationIntegrated Sensing and Communication::  
Who Benefits MoreWho Benefits More??

DU Ruolin, WEI Zhiqiang, YANG Zai

(Xi’an Jiaotong University, Xi’an 710049, China)

DOI: 10.12142/ZTECOM.202403006

https://kns.cnki.net/kcms/detail/34.1294.TN.20240911.0853.002.html, 
published online September 11, 2024

Manuscript received: 2024-08-26

Abstract: This paper compares the benefits of communication-assisted sensing and sensing-assisted communication in the context of inte‑
grated sensing and communication (ISAC). Communication-assisted sensing leverages the extensive cellular infrastructure to create a vast and 
cooperative sensor network, enhancing environmental perception accuracy and coverage. On the other hand, sensing-assisted communication 
utilizes advanced sensing technologies to improve predictive beamforming and channel estimation performance in high-frequency and high-
mobility scenarios, thereby increasing communication efficiency and reliability. To validate our analysis, we present an example of channel 
knowledge map (CKM)-assisted beam tracking. This example demonstrates the practical advantages of incorporating CKM in enhancing beam 
tracking accuracy. Our analysis confirms that communication-assisted sensing may offer greater development potential due to its wide cover‑
age and cost-effectiveness in large-scale applications.
Keywords: communication-assisted sensing; integrated sensing and communication (ISAC); sensing-assisted communication; 6G; vehicle-to-
everything (V2X)

Citation (Format 1): DU R L, WEI Z Q, YANG Z. Integrated sensing and communication: who benefits more? [J]. ZTE Communications, 2024, 
22(3): 37–47. DOI: 10.12142/ZTECOM.202403006
Citation (Format 2): R. L. Du, Z. Q. Wei, and Z. Yang, “Integrated sensing and communication: who benefits more?” ZTE Communications, 
vol. 22, no. 3, pp. 37–47, Sept. 2024. doi: 10.12142/ZTECOM.202403006.

1 Introduction

Integrated sensing and communication (ISAC) is gaining 
widespread attention as a crucial technology for future 
wireless systems[1]. The International Telecommunication 
Union (ITU) has regarded ISAC as one of the key poten‑

tial technologies for the 6G mobile communication systems[2]. 
Future 6G networks are expected to utilize wide-bandwidth ra‑
dio signals, large-scale antenna arrays, and multiple network 
nodes to offer efficient sensing capabilities including detec‑
tion, localization, tracking, activity recognition, and environ‑
mental reconstruction, which brings the ultimate vision of the 
interconnected, intelligent, and perceptive world into real‑
ity[3–6]. Moreover, in future 6G wireless networks, ISAC will 
support higher data rates, enhanced communication reliabil‑
ity, and improved network coverage.

ISAC provides substantial gains by combining communica‑
tion and sensing functions into a unified framework. This inte‑
gration results in increased spectrum and hardware utilization 
efficiency, collectively known as integration gain. More impor‑
tantly, coordination gain is achieved through the mutual assis‑
tance of communication and sensing, enhancing overall sys‑
tem performance[1]. ISAC allows the communication system to 

serve as a sensor[3], utilizing radio wave transmission, reflec‑
tion, and scattering to perceive and understand the physical 
environment[7], thereby offering a broader range of new ser‑
vices. Additionally, high-precision localization, imaging, and 
environmental reconstruction can significantly improve com‑
munication performance by enabling more accurate predictive 
beamforming[8], faster link recovery[9], and reduced overhead 
for tracking channel state information (CSI)[10–11].

To enhance the integration gain, researchers have consid‑
ered three design approaches: communication-centric design, 
radar-centric design, and joint optimization design[12–13]. On 
the other hand, to enhance the collaborative gain, two ap‑
proaches have been adopted[1]: communication-assisted sens‑
ing and sensing-assisted communication. In particular, 
communication-assisted sensing leverages existing cellular 
network protocols and architectures to utilize available radio 
resources for sensing based on communication signals. Wire‑
less communication networks enable distributed sensing and 
enhance sensing performance to address the limitations of mo‑
nostatic sensing. In perceptive mobile networks (PMN), exist‑
ing works have shown that distributed ISAC systems can im‑
prove localization accuracy and moving target detection prob‑
ability by offering extensive angle observations and a wide 
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range of spatial diversity[14].
However, distributed ISAC imposes a demanding require‑

ment on time and frequency synchronization among distrib‑
uted sensing nodes[14]. The main challenges of communication-
assisted sensing include self-interference cancellation, inter‑
ference management, network resource scheduling, and syn‑
chronization[1, 5, 14], which will be detailed later. Sensing-
assisted communication refers to the use of radar sensing to as‑
sist communication in high-mobility scenarios, effectively re‑
ducing communication overhead and improving communica‑
tion reliability[15–16]. In sensing-assisted wireless networks, 
the estimated location and speed of a moving terminal can be 
utilized for fast link establishment and handover, thus reduc‑
ing access delay[17–19]. The main challenges of sensing-
assisted communication include the limited sensing range, the 
mismatch between the sensed state and CSI, and the require‑
ment for full-duplex operation to eliminate strong interference 
from transmitted signals to the echoes.

This paper investigates the comparative analysis of 
communication-assisted sensing and sensing-assisted commu‑
nication, including their applicable scenarios, sources of ben‑
efits, and technical details. We aim to determine which 
method holds greater research significance and performance 
gain in future 6G scenarios, such as intelligent transportation 
systems and smart cities. In this paper, we first introduce the 
basic concepts, main challenges and usage scenarios of ISAC. 
Then, we discuss the mutual benefits of sensing and communi‑
cation, and investigate which one benefits more. In the end, 
we present an example of channel knowledge map (CKM)-as‑
sisted beam tracking to illustrate how communication-assisted 
sensing enhances beam tracking accuracy in complex vehicle-
to-everything (V2X) scenarios in the presence of multipath 
and channel variations.
2 Fundamentals of ISAC

2.1 ISAC Definition and Models
ISAC aims to achieve dual func‑

tions of communication and radar 
through integrated design in hard‑
ware platforms, resource allocation, 
and signal processing, addressing 
the issue of scarce spectrum re‑
sources[3].

The main advantage of ISAC over 
independent sensing or communica‑
tion is integration gain. As shown in 
Fig. 1, both sensing and communica‑
tion (S&C) utilize radio waves as 
their signal carriers， and the propa‑
gation of these signals follows Max‑
well’s equations. This commonality 
implies that the components or re‑

sources used for sensing and communication can be effec‑
tively coupled to achieve more efficient resource utilization. 
For example, ISAC can divide the antenna array into two 
groups, one for communication and the other for sensing, us‑
ing the same hardware to fulfill their respective purposes. 
Spectral efficiency can be readily pursued by employing a 
dual-mission signal[13]. Consequently, by sharing spectrum and 
hardware, system spectral efficiency, energy efficiency, and 
hardware efficiency can be improved, thereby achieving inte‑
gration gain. Furthermore, the mutual assistance between sens‑
ing and communication functions can further enhance their re‑
spective performances, leading to coordination gain. As de‑
picted in Fig. 1, environment-aware communication can be 
achieved by incorporating the sensed information, such as the 
user terminal state and the environment radio map[4, 8], into the 
communication design. Multistatic sensing can be achieved 
via proper information interaction among distributed sensing 
nodes.

Fig. 2 illustrates three types of ISAC systems, including mo‑
nostatic sensing, bistatic sensing, and multistatic sensing. In 
all these scenarios, the base station (BS) transmits ISAC sig‑
nals to perform communication and sensing tasks simultane‑
ously. The red arrows represent communication channels, 
while the yellow arrows indicate sensing channels. The BS 
communicates with users via the communication channels and 
detects the position, speed, and other kinematic parameters of 
targets through sensing channels. In a monostatic ISAC sys‑
tem, the BS receives echoes reflected from targets at the same 
time. Nevertheless, a full-duplex BS is necessary for the simul‑
taneous transmission and receiving of signals, as any remain‑
ing interference signal could deteriorate the BS’s sensing ca‑
pabilities[3]. To circumvent this limitation, bistatic and multi‑
static ISAC systems have been proposed, where the sensing re‑
ceiver is physically separated from the transmitter and almost 
does not suffer from the residual interference, and thus hard‑
ware modifications for a full-duplex BS are avoided. The bi‑

▲Figure 1. Two main advantages of integrated sensing and communication (ISAC): integration gain 
and coordination gain

Sensing signal Communication signalRadio waves

Environment-aware communication Information interaction for multistatic sensing
Collaboration

Integration gain

Coordination gain

Sensing channel Communication channelMaxwell’s equations
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static ISAC system includes one BS and one sensing receiver. 
The multistatic ISAC system comprises multiple base stations 
that together form a sensing cluster. This configuration in‑
cludes various combinations, such as several transmitters with 
multiple receivers, a single transmitter with multiple receiv‑
ers, or multiple transmitters with one receiver, to provide sens‑
ing services.

Based on whether the sensing target has the requirement 
and capability of communication, targets can be categorized 
into communication objects and non-communication objects. 
Communication objects refer to cooperative targets that can 
transmit, receive, and process signals, allowing the BS to 
sense them by receiving signals sent or reflected by the tar‑
gets. Sensing based on communication objects is common in 
vehicle-to-everything (V2X) or unmanned aerial vehicle 
(UAV) networks, where the BS aims to communicate with the 
car or UAV while simultaneously acquiring and tracking their 
location and velocity. Communication objects within a sce‑
nario can also be classified based on their sensing require‑
ments. For instance, between fixed BSs, only the channel state 
information (CSI) needs to be sensed. However, in more com‑
plex scenarios with dynamic interference, it is necessary to 
sense not only the CSI but also the radar cross-section, move‑
ment velocity, and other kinematic parameters of the tar‑
gets[11, 20–21]. Non-communication objects, on the other hand, 
lack baseband functionality and cannot send or receive sig‑
nals. They can only reflect signals to the BS, enabling the BS 

to sense their states. Non-communication targets are usually 
considered a part of the surrounding environment and their in‑
formation can facilitate environment-aware communication[4].
2.2 Challenges of ISAC

2.2.1 Joint Waveform Design and S&C Tradeoff
One of the primary challenges in ISAC is designing a uni‑

fied waveform that can perform both target sensing and infor‑
mation transmission. The design methodologies can typically 
be categorized into three approaches: radar-centric design, 
communication-centric design, and joint design. The inherent 
similarities in channel parameters between sensing and com‑
munication serve as a primary driving force behind the design 
of ISAC waveforms. For example, in the monostatic ISAC sys‑
tem shown in Fig. 2, communication signal detection is based 
on one-way transmission from the BS to the user, while sens‑
ing relies on echoes received at the BS following round-trip 
propagation. But for both sensing and communication, the 
physical environment between the user and the BS is the 
same. Despite this, there is an inevitable tradeoff between 
sensing and communication due to different performance met‑
ric priorities for each function. We consider a general linear 
Gaussian channel model as follows[22]:
Y = H (η) S ( ξ ) + Z , (1) 

where Y, H, S, and Z represent the received signal at the BS, 
the channel, the transmitted sig‑
nal, and the Gaussian noise, re‑
spectively. These elements can 
be in the form of scalars, vec‑
tors, or matrices. The channel H 
is dependent on the physical pa‑
rameters, e. g., range, angle, and 
velocity. The transmit signal S 
may be encoded/modulated with 
some information codeword ξ.

From the communication per‑
spective, the fundamental prob‑
lem is getting the codewords ξ 
back from Y. The channel H can 
be estimated a priori via pilot 
training. On the other hand, from 
the sensing perspective, the pri‑
mary objective is to accurately 
estimate the target parameter η 
contained within H based on the 
known Y and S. When S is a 
known deterministic signal, ξ 
can be left out because the radar 
waveform does not contain any 
information. Then, the ISAC sys‑▲Figure 2. Typical integrated sensing and communication (ISAC) systems, where the sensing target can be 

the communication receiver itself in all the scenarios

Communication receiver

Communication receiver

Sensing receiver

Target
Bistatic sensing

BS

Communication 
receiver

Target
TargetCommunication 

receiver

Monostatic sensing Multistatic sensing

BS

Sensing receiver

Target
Communication 

receiver

BS

BS

39



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

DU Ruolin, WEI Zhiqiang, YANG Zai 

Special Topic   Integrated Sensing and Communication: Who Benefits More?

tem model can be written as[3, 22]:
ì
í
î

ïï
ïï

Sensing signal model: Yr = H r( )η S + Zr
Communication signal model: Yc = HcS + Zc , (2)

where S is the ISAC signal’s discrete representation. To dis‑
tinguish between sensing and communication channels, we 
use the subscripts ( ⋅ ) r and ( ⋅ ) c, respectively.

Since sensing and communication have distinct perfor‑
mance metrics and prefer different signal distributions, it is 
crucial to achieve a balance between these two functions. In 
ISAC systems, there are two types of tradeoffs: the time-
frequency tradeoff and the spatial tradeoff, also known as the 
deterministic random tradeoff (DRT) and the subspace trade-
off (ST) [22]. Sensing systems prefer deterministic signals to 
achieve steady sensing performance, but communication sys‑
tems need random signals send as much information as fea‑
sible. Choosing the modulation order for random data results 
in a tradeoff between time and frequency: higher-order modu‑
lation improves communication rates but degrades sensing per‑
formance because the random and non-constant-modulus data 
raise side-lobe levels in the ambiguity function[3, 19, 22]. How‑
ever, the choice of ISAC beamforming strategies is related to 
the spatial tradeoff. Aligning sensing-optimal and 
communication-optimal signals to their respective subspaces 
and managing resource allocation accordingly can enhance ef‑
ficiency if their subspaces overlap. Conversely, no resources 
may be reused if two subspaces are orthogonal to each other, 
nulling any performance gain. More resources may be utilized 
between sensing and communication when there is a larger 
overlapping degree between two subspaces, which improves 
tradeoff performance[12].
2.2.2 Artificial Intelligence (AI) Enabled ISAC

Powerful AI algorithms offer new opportunities to ISAC. A 
large volume of data generated by ISAC at the BS need to be 
processed rapidly and accurately by AI algorithms, potentially 
in conjunction with sensing data from other model sensors 
such as cameras and LiDARs[18], to support applications with 
ultra-low latency requirements for sensing, communication, 
computation, and control. In data-rich and complex ISAC sce‑
narios such as urban outdoor propagation environments, there 
exist plenty of noisy, discontinuous, or multimodal objective 
observations. The physical formulation of the system’s nonlin‑
ear signal characteristics may be unknown or challenging to 
the model. In such cases, AI can be employed to simulate in‑
tricate communication/sensing channels, the surrounding envi‑
ronment, and even the system uncertainties. This approach ad‑
dresses challenges that cannot be resolved solely through tra‑
ditional mathematical models or signal-processing techniques.

However, integrating AI with ISAC systems poses signifi‑
cant challenges. The ISAC system can leverage its powerful 
sensing and communication capabilities to provide rich input 

data for the training AI models. Additionally, AI-enabled 
ISAC introduces complex tradeoffs between sensing, commu‑
nication, and computation[1]. Firstly, defining performance 
metrics for an AI-enhanced ISAC system is challenging. This 
may involve integrating metrics such as AI model complex‑
ity, convergence speed, generalization ability, data depen‑
dency, and training computational cost with ISAC perfor‑
mance metrics. For example, it is necessary to define the 
overall latency for AI-enabled ISAC integrated services. If 
the processes of communication, sensing, and AI computa‑
tion are sequential, the combined communication, sensing, 
and computation latency must not exceed the overall latency. 
Secondly, establishing an AI model dedicated to ISAC sys‑
tems is challenging. For instance, the recently developed 
channel semantics provide an innovative perspective to ISAC 
signal processing. By combining the advantages of data-
driven and model-driven techniques, a more reliable and ef‑
fective ISAC system can be developed based on specific AI 
models[23]. Furthermore, data security and privacy protection 
within the AI-enabled ISAC integrated architecture are criti‑
cal concerns that cannot be overlooked.
2.2.3 Collaborative ISAC

In multi-user and multi-target scenarios, collaborative ISAC 
systems face the challenge of coordinating multiple coopera‑
tive nodes to optimize resource utilization and improve sens‑
ing performance. Effective collaboration requires sophisti‑
cated algorithms to manage interactions among users and 
share sensing data. Cloud radio access networks (C-RAN) of‑
fer greater flexibility for ISAC through cooperation among mul‑
tiple BSs, especially in resource-limited situations, providing 
additional cooperative gains for both communication and sens‑
ing functions[24].

To this end, it is crucial to develop advanced optimization 
algorithms and distributed sensing technologies to minimize 
information interaction overhead and enhance the efficiency of 
collaborative ISAC systems. For example, a joint communica‑
tion and radar optimization resource allocation scheme is in‑
troduced, which supports the fusion of vast numbers of sens‑
ing data from both wireless infrastructure and vehicles to 
achieve optimal computation and resource allocation deci‑
sions[25]. High-precision clock synchronization among nodes is 
also necessary for collaborative sensing. Imperfect clock syn‑
chronization can deteriorate the ambiguity function of the 
sensing signals in distributed systems, leading to reduced lo‑
calization accuracy. The synchronization error in several 
clocks must be within tens of picoseconds in order to achieve 
centimeter-level resolution precision[26]. This is a very strict 
synchronization requirement. While certain synchronization 
protocols, such as precision time protocol (PTP) and master-
slave closed-up, can achieve a high degree of synchronization 
accuracy[27], advanced methods are expected to support higher 
precision sensing functions.

ì
í
î

Sensing signal model: Yr = H r( )η S + Zr
Communication signal model: Yc = HcS + Zc
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2.2.4 Privacy and Security Issues
Privacy and security issues are significant considerations. 

Integrating sensing and communication functions involve col‑
lecting and transmitting a large volume of user data and envi‑
ronmental information[28]. In practice, the sensed targets can 
potentially use the information-bearing signals to detect confi‑
dential information sent to the communication destination. 
This presents a significant tradeoff issue for the transmitter in 
ISAC systems. On one hand, the transmitter aims to enhance 
target sensing by focusing power on the target. On the other 
hand, it must limit the communication signal power reaching 
the target to prevent potential eavesdropping. Therefore, effec‑
tive privacy protection measures and security mechanisms 
must be implemented to prevent information leakage and mali‑
cious attacks. Research and exploration in these areas are cru‑
cial for advancing the development and application of sensing 
and communication technologies.
2.3 Use Cases for ISAC in 6G

The most prominent scenarios and use cases for ISAC span 
both civilian and military domains[1, 16]. From a civilian per‑
spective, numerous emerging applications necessitate the joint 
design of sensing and communication, such as smart cities, 
smart homes, and intelligent manufacturing[5], as well as intel‑
ligent transportation applications like vehicular networks and 
autonomous driving[18]. From a military perspective, the devel‑
opment of radar, communication, and remote sensing systems 
has historically been isolated. By applying ISAC technologies, 
it is possible to significantly reduce the consumption of spec‑
trum and hardware resources and enhance the performance of 
both communication and sensing.
2.3.1 V2X High-Accuracy Localization and Beam Tracking

V2X enhances traffic efficiency, road safety, and the avail‑
ability of infotainment services. It encompasses vehicle-to-
vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-
infrastructure (V2I), and vehicle-to-network (V2N) communi‑
cations. V2X requires Gbit/s-class data transmission with low 
latency and precise sensing for vehicle positioning[29]. Tradi‑
tional technologies like global navigation satellite systems 
(GNSS) and dedicated short range communications (DSRC) 
are inadequate for these needs[30]. Robust beam tracking is es‑
sential in dynamic vehicular environments and millimeter-
wave (mmWave) communications, extending the network cov‑
erage effectively[16].

Within the ISAC framework, the roadside units (RSUs) can 
predict and estimate the vehicle’s state at each epoch and the 
beamforming can be designed to match the predicted channel. 
For example, a novel extended Kalman filtering (EKF) -based 
predictive beamforming was proposed to effectively track and 
predict movements[16, 21, 29, 31–32], employing ISAC echo signals 
for real-time vehicle position detection and state parameter es‑
timation. With the use of the vehicles’ state transition models 

and echo signals, a distribution of the estimated parameters is 
generated in a novel beamforming system based on probabilis‑
tic prediction[10]. However, many algorithms presuppose the 
availability of line-of-sight (LoS) links that are often ob‑
structed in urban environments by high-rise buildings or other 
vehicles, leading to degraded channel time correlation and sig‑
nificantly impacting performance[18]. ISAC in a non-line-of-
sight (NLoS) scenario deserves to be studied further.
2.3.2 Human Activity Recognition and Smart Home

ISAC-based Internet of Things (IoT) systems show great po‑
tential in various applications, including daily activity recogni‑
tion, healthcare monitoring, home security, and driver atten‑
tion monitoring[13]. Compared with sensor-based methods 
(such as cameras, Lidars, and ultrasonic sensors), current  
mmWave sensing has several benefits, such as a wider sens‑
ing range, fine-grained and directed sensing capacity, and re‑
sistance to illumination conditions[33]. Evaluating variations in 
the amplitude and phase of wireless signals can facilitate a 
range of human sensing activities, including human tracking 
and localization, activity recognition, monitoring vital signs, 
sound recovery, and human imaging. Integrating sensing capa‑
bilities into existing wireless communication devices will sig‑
nificantly enhance the quality of life by improving the living 
environment and ensuring better safety and health monitoring.
2.3.3 ISAC for IRS-Assisted System

Intelligent reflecting surface (IRS) adjusts the phase, ampli‑
tude, frequency, and polarization of incident signals using nu‑
merous low-cost reflecting elements, thereby modifying signal 
propagation[34]. The IRS usage is more appropriate for sensing 
and communication tasks because the ISAC system uses a 
common transmitter[1]. The LoS path between the radar and 
the target is critical for sensing functionality. In scenarios 
where the LoS path is obstructed, resulting in weak or non-
existent signals, a virtual LoS channel can be established be‑
tween the radar and the target using IRS to cover blind spots. 
This ensures reliable sensing performance and utilizes the 
NLoS channels established by the IRS for downlink multi-user 
communication. For changing the direction of the signal that 
arrives from the BS towards the users, the BS uses a backhaul 
control connection to reconfigure the phase shift correspond‑
ing to each element in real time via external signals[34]. This 
particular application of the IRS increases the BS’s coverage 
area and improves the received signal energy at distant users. 
By simply adjusting these phase shifts to allow the BS to only 
do digital beamforming with fewer antennas, the IRS-assisted 
systems enable analog beamforming, lowering hardware costs 
and increasing energy efficiency.

However, the combined design issue including IRS is com‑
putationally hard, especially when designing optimal wave‑
forms and allocating resources efficiently.
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2.3.4 ISAC for UAV Networks
UAVs are characterized by high mobility, long range, wide 

coverage, and ease of deployment[35]. UAVs constantly serve 
as temporary BSs or relays for potential improvements in com‑
munication coverage when employed as an auxiliary communi‑
cation platform in airspace[36]. Numerous advantages can be re‑
alized if the independent communication load and sensing 
load are replaced by the ISAC load. Because of the decreased 
load weight, UAVs will be more durable and flexible. Sec‑
ondly, the ISAC UAV platform can achieve coordination 
gains. On the one hand, when the integrated waveform in the 
downlink communication channel between the BS and the 
UAVs encounters possible targets (such as buildings or unco‑
operative UAVs) during transmission, it will immediately be 
reflected back. The echo signal can then be cooperatively pro‑
cessed by the UAV network to detect the presence of a non-
cooperative UAV and even pinpoint its location. This feature 
lowers the possibility of mishaps brought on by uncooperative 
UAVs, including privacy violations and flight disturbances. A 
more stable beam between UAVs and BS can be formed with 
the help of sensing the geographical relationship between the 
UAVs and the ground, which reduces the likelihood of mis‑
matching in the beam management process.
3 Mutual Benefits of Communication and 

Sensing

3.1 Communication-Assisted Sensing
Integrated with sensing capabilities, 6G networks can func‑

tion as a vast sensor network, continuously perceiving the 
physical world. A massive number of data provided by these 
networks contain rich channel knowledge, laying a solid foun‑
dation for communication-assisted sensing.
3.1.1 Networked Sensing

Communication-assisted sensing achieves gains in ISAC 
systems through sensing networks and cooperative sensing[14]. 
Due to the significant influence of incident angles on the scat‑
tering and reflection intensity of electromagnetic waves on ob‑
ject surfaces and the potential presence of obstacles obstruct‑
ing LoS, the sensing capability of individual nodes is lim‑
ited[11, 29, 37]. Existing communication devices reduce costs for 
establishing sensing platforms and provide numerous nodes 
and data sources. Through communication networks support‑
ing multi-node cooperative sensing, nodes share sensing re‑
sults and collectively sense their surrounding environment. 
This approach utilizes data fusion to reduce measurement un‑
certainties, expand coverage areas, enhance sensing accuracy 
and resolution, and even achieve sensing under NLoS condi‑
tions. Achieving optimal fusion of sensing results poses chal‑
lenges in current research, focusing on addressing issues such 
as synchronization, joint signal and data processing, and effi‑
cient allocation of network resources.

3.1.2 CKM-Assisted Sensing
CKM is a comprehensive database that integrates environ‑

mental and channel state data to significantly enhance spa‑
tial coherence by correlating geographic positions with chan‑
nel states[4]. This supports precise beam alignment and track‑
ing[4, 38–39]. CKM is essentially a mapping between the loca‑
tion and CSI, which can facilitate environment-aware commu‑
nication by providing a priori information on channels for 
transceiver design. Moreover, CKM can also be used in the 
opposite direction to improving sensing performance based 
on the measured CSI or channel parameters. Unlike tradi‑
tional methods that rely on angle and signal energy[37], CKM 
uses a priori information for hypothesis testing in LoS link 
identification[11, 15]. This approach not only improves LoS de‑
tection but also aids in clutter suppression and interference 
elimination within ISAC systems. NLoS anchor nodes are 
known to be ineffective in improving localization accuracy, 
and when no prior knowledge of their NLoS pathways is avail‑
able, they can even impair localization. In time-of-arrival 
wireless localization in complex environments that lack prior 
knowledge of NLoS path, only anchors with LoS paths to the 
agent increase localization accuracy. Based on the target’s 
prior distribution, a unique CKM, i. e., LoS map[7], could 
greatly reduce the localization error by selecting anchor 
nodes that are suitable for position estimation. Besides, the 
channel features included in the CKM are usually more 
stable than the directly measured CSI. Thus, CKM-assisted 
sensing could be more robust to environment dynamics. Be‑
sides, the channel features included in the CKM are usually 
more stable than the directly measured CSI. Thus, CKM-
assisted sensing could be more robust to environment dynam‑
ics. While real-time training overhead can be reduced by ra‑
dar/LiDAR/vision-aided communications without consuming 
communication resources, the cost, size, and complexity of 
communication systems are increased due to the need for ex‑
tra hardware, waveforms, and signal processing complexity. 
CKM-enabled communications leverage environment aware‑
ness and can be implemented without these additional re‑
quirements. Furthermore, CKM can leverage vision, LiDAR, 
and radar observations to provide more precise predictions.
3.1.3 Wi-Fi Sensing

Due to the widespread usage and growing popularity of Wi-
Fi devices, Wi-Fi signals, a part of the electromagnetic spec‑
trum, can be found everywhere in everyday life and work[3]. In 
addition to traditional communication functions, Wi-Fi signals 
contain a wealth of environmental information that can be ex‑
ploited to sense and locate people and objects. Wi-Fi sensing 
can be categorized into three types: estimation, recognition, 
and detection[40]. In a Wi-Fi system employing multiple-input 
and multiple-output orthogonal frequency division multiplex‑
ing (MIMO-OFDM), the CSI is a 3D matrix of complex num‑
bers representing the amplitude attenuation and phase shift of 
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multiple-path Wi-Fi channels that can be used for different 
wireless sensing applications[41]. For instance, CSI amplitude 
fluctuations in the time domain exhibit different trends for 
various humans, activities, gestures, and so on. These patterns 
may be applied to motion detection, human identification, fall 
detection, human presence detection, activity recognition, and 
gesture recognition. Human localization and tracking can be 
facilitated by CSI phase changes in the spatial and frequency 
domains, i. e., transmitting/receiving antennas and carrier fre‑
quencies, which are connected to signal transmission delay 
and direction[41]. However, using a Wi-Fi device for sensing 
can degrade network performance and the sensing perfor‑
mance can be influenced by network settings. This interplay 
between Wi-Fi sensing and networking poses challenges but 
also highlights future trends in Wi-Fi technology, where seam‑
less coexistence of both functions will be essential.
3.2 Sensing-Assisted Communication

Sensing-assisted communication demonstrates significant 
technical advantages and application potentials in high-
frequency and high-mobility scenarios.
3.2.1 High-Frequency Communication

High-frequency ISAC signal propagation exhibits two pri‑
mary characteristics:

• It shows rapid energy attenuation and significant energy 
loss due to reflection;

• The communication channel highly depends on the geo‑
metrical features of the environment.

These two characteristics underscore the potential to bolster 
communication robustness through precise environmental 
sensing. In high-frequency environments, sensing-assisted 
communication derives substantial benefits from several fac‑
tors. Firstly, high-frequency waves almost completely lose 
their capacity to pass through common obstacles like walls 
and human bodies. This could block the LoS path between 
user equipment to an access point, thereby limiting the cover‑
age distance. In scenarios characterized by complex and ob‑
structive environments, high-accuracy localization and map re‑
construction become pivotal to optimizing access. These sens‑
ing services can proactively design beam directions that mini‑
mize blockage by acquiring channel information a priori, 
thereby reducing disruptions[11,15]. Secondly, the extensive 
bandwidth in the high-frequency band enables the system to 
distinguish between different scattering points along the dis‑
tance axis with centimeter-level resolution[42]. Given that chan‑
nel parameters in high-frequency scenarios are intimately 
linked to the physical environment, a realistically recon‑
structed scenario from accurate sensing data can faithfully 
mirror the propagation dynamics of communication signals. 
Consequently, this allows for tailored energy allocation and 
beamforming to significantly enhance the achievable commu‑
nication rate.

3.2.2 High-Mobility Communication
In high-mobility environments, beam training results in con‑

siderable overhead and significant latency[41–42]. Owning beam 
tracking capacity is essential to adapt to fast-changing chan‑
nels. In the context of V2I networks, sensing-assisted commu‑
nication can reduce frequent beam sweeping overheads, while 
improving localization accuracy and robustness in high-
mobility scenarios. Leveraging ISAC signals, RSUs can ex‑
tract angle parameters from reflected echoes, thereby predict‑
ing angles and beam directions for the next moment[10, 21]. In 
high-mobility scenarios, the users may need to handover fre‑
quently between different BSs. Different from traditional 
detect-and-correct methods, a predict-and-prevent process 
that reduces the beam scanning area and offers early interven‑
tions for timely cell switching can be rendered possible by the 
sensing-assisted beam management method.

In summary, sensing-assisted communication in high-
frequency and high-mobility scenarios not only significantly 
enhances the performance and reliability of communication 
systems through optimized beamforming and alignment strate‑
gies but also effectively reduces communication costs and 
complexity. The application potential of this technology prom‑
ises substantial technological advancements and socio-
economic benefits in future intelligent transportation, vehicu‑
lar networks, and dense urban network domains.
3.3 Who Benefits More?

In summary, the relative advantages of communication-
assisted sensing over sensing-assisted communication are 
highly dependent on the specific scenarios. In multistatic sce‑
narios or at BSs with a priori information, such as networked 
sensing, ubiquitous sensing, and CKM-assisted sensing, which 
are particularly relevant to mmWave and intelligent transpor‑
tation technologies, sensing typically derives greater benefits. 
Conversely, in environments characterized by high-mobility 
and high-frequency communication, the advantages predomi‑
nantly favor communication.

Communication-assisted sensing offers significant benefits, 
particularly when the target is part of the surrounding environ‑
ment. When BSs are connected via fronthaul links and partici‑
pate in downlink bi-static sensing in a PMN framework, one 
BS’s data payload can be directly acknowledged by another 
BS through coordination, which can be utilized for sensing 
functions. The high-capacity and low-latency optical fiber 
fronthaul also eliminates the need for complex phase noise 
compensation and synchronization methods.

On the other hand, sensing-assisted communication ben‑
efits more when the S&C channels are closely correlated and 
there are more wireless resources available for management. 
In general, sensing-assisted communication systems take ad‑
vantage of the correlation between S&C channels to lower com‑
munication overheads and improve efficiency. Sensing-
assisted V2X beam training, tracking, and prediction tech‑
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niques, for example, rely on the fact that a vehicle serves as 
both a radar target and a communication receiver, meaning 
that the S&C channels are highly linked. Sensing can be help‑
ful in a high-mobility network not only for beam resources but 
also for allocating and managing more general wireless re‑
sources like power and bandwidth.

Given the existing communication networks and ubiquitous 
communication signals, communication-assisted sensing, with 
its broad coverage and capabilities for multi-node cooperative 
sensing, generally excels in more array of application sce‑
narios. In the future, ISAC should progress from a monostatic 
to a multi-domain cooperative model. The exploration of meth‑
ods to integrate as much sensory information as possible with 
minimal complexity to maximize cooperative gains remains a 
critical area of future research.
4 An Example: CKM-Assisted Multipath 

Beam Tracking
We provide an example of communication-assisted sensing 

in this section. In our example, tracking can be considered a 
sensing task, which aims to obtain the location of a moving tar‑
get based on the angle and position measurements. Communi‑
cation nodes record channel state information in a database 
known as the CKM, which can enhance sensing accuracy.
4.1 System Model

Robust beam tracking schemes are required due to the dy‑
namic properties of vehicle motion and communication envi‑
ronments, as well as the high path loss and sensitivity to shad‑
owing in mmWave communications[42]. In the conventional 
beam tracking process, the receiver estimates the angle based 
on the received signal from the transmitter’s pilot and returns 
it back to the transmitter. A tradeoff between the pilot over‑
head and the estimation accuracy is therefore needed[20, 43–47]. 
In high-mobility communications, to achieve higher estimation 
accuracy, it is necessary to transmit more pilot signals, which 
incurs higher delay. A discrete Markov process has been pro‑
posed as a model for the temporal angle variations in a fast 
beam tracking strategy for mobile mmWave systems[17].

We consider an mmWave MIMO system that includes an 
ISAC BS within an RSU. The RSU provides downlink commu‑
nication services to user vehicles. Each user vehicle is 
equipped with a uniform linear array (ULA) for receiving sig‑
nals from the RSU. The RSU itself functions both as a receiver 
and a transmitter, each end equipped with its own ULA.

Time is divided into slots, with each slot further divided into 
sub-slots. Within each slot, channel parameters remain con‑
stant. The transmitted ISAC signals are reflected back to the 
RSU after encountering scatterers, resulting in the RSU receiv‑
ing a sum of paths, including reflections from various elements, 
such as buildings or other vehicles. The RSU exploits the echo 
signals and a priori information of CKM to align and track the 
beams accurately. The power of the reflected signal is not only 

determined by the round-trip path-loss but also by the radar 
cross-section (RCS) of the target. In order to examine the RCS 
channel properties and environmental data, ZHANG et al. [48] 
created an ISAC channel measurement platform. By approxi‑
mating Maxwell’s equations, extracting parameters through 
measurements, and estimating physical optics (PO), one can ob‑
tain the RCS. In target localization and tracking scenarios, the 
vehicle is usually modeled as a point, ignoring its volume and 
shape[9]. The RCS of the vehicle is assumed to be constant 
within a short period of time while the RCS of buildings is con‑
sidered to be known, attributed to the CKM[9, 16–17]. The same 
assumptions as proposed in other articles are used in this pa‑
per, i.e. the RCS of structures is known and the RCS of vehicles 
is assumed to be constant throughout a short period of time.

From the view of the RSU, the radar sensing channel is both 
time and frequency selective, which is given by: H ( t, τ) =
∑
i = 1

P

βi  b (θi )  aH(θi )  δ (τ - τi )  ej 2 π μi  t, where βi, τi and μi de‑
note the channel path gain, the round-trip delay, and the round-
trip Doppler spread corresponding to the i-th path, respectively. 
We denote θi as the angle of the i-th path relative to the RSU. 
Tracking NLoS paths improves communication performance in 
wireless networks, despite their lower path gain compared with 
LoS paths. While NLoS pathways experience many reflections, 
resulting in lower signal strength, they, like LoS paths, contrib‑
ute considerably to overall multipath propagation. To solve the 
difficulty of low NLoS path gain, we use angular a priori knowl‑
edge from the CKM and temporal correlation to track NLoS 
path directions more reliably.

CKM: channel knowledge map
ISAC: integrated sensing and communication
LoS: line-of-sight

NLoS: non-line-of-sight
RSU: roadside unit

▲Figure 3. Considered scenario of CKM-assisted ISAC beam tracking 
system
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4.2 Dual Domain Beam Tracking Framework
We have developed a robust multipath beam tracking 

method based on CKM. This method leverages prior informa‑
tion from CKM, which maps location to CSI, including param‑
eters such as channel gains, angles, delays, and Doppler fre‑
quency shifts. By integrating this information, we propose an 
EKF-based tracking technique that is suitable for scenarios 
where the LoS path may disappear, allowing for precise con‑
tinuous tracking.

The framework utilizes EKF to predict and track the state of 
vehicles, with state evolution and measurement models de‑
fined for both LoS-present and LoS-absent conditions. Under 
LoS-absent conditions, the measurement variables are time de‑
lays, Doppler shifts, and angle measurements for multiple re‑
flectors, while the state variables are the vehicle’s position 
and velocity. Essentially, the measurement model makes use 
of CKM, which records the channel parameters for each loca‑
tion. The proposed algorithmic framework bridges coordinate 
domain and beam domain information, effectively incorporat‑
ing environmental awareness into the tracking process. The 
EKF measurement equations can maintain continuous beam 
tracking even when the LoS path is obscured, enabling robust 
multipath beam tracking.
4.3 Simulation Results

In this section, we present the 
numerical results to verify the 
performance of our proposed al‑
gorithm. The method described 
in Ref. [15], which does not uti‑
lize CKM’s prior information to 
enhance angle estimation, is 
used as the baseline algorithm.

Fig. 4 demonstrates that our 
algorithm achieves the best sens‑
ing performance under different 
antenna configurations. In the 
scenario under consideration, 
the vehicle approaches the RSU 
from one side and then moves in 
front of it to the other. It is evi‑
dent that as time goes on, the po‑
sition tracking errors initially 
rise and subsequently fall. This 
pattern arises because as the ve‑
hicle approaches the BS, its rela‑
tive angular velocity increases, 
heightening the likelihood of los‑
ing track of the vehicle. Notably, 
compared with the baseline, our 
algorithm’ s superior perfor‑
mance stems from utilizing prior 
information provided by CKM, 

which significantly reduces angle estimation errors in mul‑
tipath low signal-to-noise ratio (SNR) environments.
5 Conclusions and Outlook

ISAC is proposed to revolutionize the landscape of wireless 
communication and sensing systems. This paper offers a com‑
prehensive overview of ISAC, detailing its foundational prin‑
ciples, system models, use cases, and main challenges. We be‑
gan by elucidating the basic concepts of ISAC. Through vari‑
ous use cases, such as V2X applications, smart homes, and 
military scenarios, we demonstrated ISAC’s vast potential and 
versatility. Our analysis delved into the significant perfor‑
mance gains from both sensing-assisted communication and 
communication-assisted sensing. Sensing-assisted communica‑
tion enhances beamforming and channel estimation, espe‑
cially crucial in high-frequency and high-mobility environ‑
ments. Conversely, communication-assisted sensing leverages 
the expansive cellular infrastructure to create a cooperative 
sensor network, markedly improving environmental perception 
accuracy and coverage. We presented a practical example il‑
lustrating the benefits of ISAC integration. This example un‑
derscored the enhanced sensing accuracy, affirming its trans‑
formative impact on future wireless networks. In conclusion, 
while ISAC technology presents immense opportunities, sev‑
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eral critical challenges still need to be addressed to fully real‑
ize the promise of ISAC in shaping the next generation of intel‑
ligent and interconnected systems.

References
[1] LIU F, CUI Y H, MASOUROS C, et al. Integrated sensing and communica‑

tions: toward dual-functional wireless networks for 6G and beyond [J]. 
IEEE journal on selected areas in communications, 2022, 40(6): 1728 –
1767. DOI: 10.1109/JSAC.2022.3156632

[2] ITU. Introduction to 6G: IMT-2030 [S]. 2020
[3] ZHANG J A, LIU F, MASOUROS C, et al. An overview of signal process‑

ing techniques for joint communication and radar sensing [J]. IEEE journal 
of selected topics in signal processing, 2021, 15(6): 1295 – 1315. DOI: 
10.1109/JSTSP.2021.3113120

[4] ZENG Y, CHEN J T, XU J, et al. A tutorial on environment-aware commu‑
nications via channel knowledge map for 6G [J]. IEEE communications 
surveys & tutorials, 2024, 26(3): 1478 – 1519. DOI: 10.1109/
COMST.2024.3364508

[5] DING C F, WANG J B, ZHANG H, et al. Joint MIMO precoding and com‑
putation resource allocation for dual-function radar and communication 
systems with mobile edge computing [J]. IEEE journal on selected areas in 
communications, 2022, 40(7): 2085 – 2102. DOI: 10.1109/
JSAC.2022.3157389

[6] WANG R Y, KLAINE P V, ONIRETI O, et al. Deep learning enabled 
beam tracking for non-line of sight millimeter wave communications [J]. 
IEEE open journal of the communications society, 2021, 2: 1710–1720. 
DOI: 10.1109/OJCOMS.2021.3096118

[7] LONG Y, ZENG Y, XU X L, et al. Environment-aware wireless localiza‑
tion enabled by channel knowledge map [C]//IEEE Global Communica‑
tions Conference. IEEE, 2022: 5354 – 5359. DOI: 10.1109/
GLOBECOM48099.2022.10001045

[8] WU D, ZENG Y, JIN S, et al. Environment-aware and training-free beam 
alignment for mmWave massive MIMO via channel knowledge map [C]//In‑
ternational Conference on Communications Workshops (ICC Workshops). 
IEEE, 2021: 1–7. DOI: 10.1109/ICCWorkshops50388.2021.9473871

[9] CUI Y P, ZHANG Q X, FENG Z Y, et al. Seeing is not always believing: 
ISAC-assisted predictive beam tracking in multipath channels [J]. IEEE 
wireless communications letters, 2024, 13(1): 14 – 18. DOI: 10.1109/
LWC.2023.3303949

[10] YUAN W J, LIU F, MASOUROS C, et al. Bayesian predictive beamform‑
ing for vehicular networks: A low-overhead joint radar-communication ap‑
proach [J]. IEEE transactions on wireless communications, 2021, 20(3): 
1442–1456. DOI: 10.1109/TWC.2020.3033776

[11] ZENG S Q, XU X L, ZENG Y, et al. CKM-assisted LoS identification and 
predictive beamforming for cellular-connected UAV [C]//International 
Conference on Communications. IEEE, 2023: 2877 – 2882. DOI: 
10.1109/ICC45041.2023.10278702

[12] LIU F, LIU Y F, LI A, et al. Cramér-Rao bound optimization for joint 
radar-communication beamforming [J]. IEEE transactions on signal pro‑
cessing, 2071, 70: 240–253. DOI: 10.1109/TSP.2021.3135692

[13] CUI Y H, LIU F, JING X J, et al. Integrating sensing and communica‑
tions for ubiquitous IoT: applications, trends, and challenges [J]. IEEE 
network, 2021, 35(5): 158–167. DOI: 10.1109/MNET.010.2100152

[14] ZHANG A, RAHMAN M L, HUANG X J, et al. Perceptive mobile net‑
works: cellular networks with radio vision via joint communication and ra‑
dar sensing [J]. IEEE vehicular technology magazine, 2021, 16(2): 20–
30. DOI: 10.1109/MVT.2020.3037430

[15] ZHAO Y K, XU X L, ZENG Y, et al. Sensing-assisted predictive beam‑
forming with NLoS identification [C]//International Conference on Com‑
munications. IEEE, 2023: 6455 – 6460. DOI: 10.1109/

ICC45041.2023.10278781
[16] LI Y X, LIU F, DU Z, et al. ISAC-enabled V2I networks based on 5G 

NR: how much can the overhead be reduced? [C]//International Confer‑
ence on Communications Workshops. IEEE, 2023: 691 – 696. DOI: 
10.1109/ICCWorkshops57953.2023.10283528

[17] ZHANG D Y, LI A, SHIRVANIMOGHADDAM M, et al. Fast beam track‑
ing for millimeter-wave systems under high mobility [C]//International 
Conference on Communications. IEEE, 2019: 1 – 6. DOI: 10.1109/
ICC.2019.8761896

[18] TIAN Y, WANG C W. Vision-aided beam tracking: explore the proper 
use of camera images with deep learning [C]//The 94th Vehicular Tech‑
nology Conference. IEEE, 2021: 1 – 5. DOI: 10.1109/VTC2021-
Fall52928.2021.9625195

[19] YUAN W J, WEI Z Q, LI S Y, et al. Integrated sensing and 
communication-assisted orthogonal time frequency space transmission for 
vehicular networks [J]. IEEE journal of selected topics in signal process‑
ing, 2021, 15(6): 1515–1528. DOI: 10.1109/JSTSP.2021.3117404

[20] HYUN S H, SONG J, KIM K, et al. Adaptive beam design for V2I com‑
munications using vehicle tracking with extended Kalman filter [J]. IEEE 
transactions on vehicular technology, 2022, 71(1): 489 – 502. DOI: 
10.1109/TVT.2021.3127696

[21] LIU F, YUAN W J, MASOUROS C, et al. Radar-assisted predictive 
beamforming for vehicular links: communication served by sensing [J]. 
IEEE transactions on wireless communications, 2020, 19(11): 7704 –
7719. DOI: 10.1109/TWC.2020.3015735

[22] LIU F, ZHENG L, CUI Y H, et al. Seventy years of radar and communica‑
tions: the road from separation to integration [J]. IEEE signal processing 
magazine, 2023, 40(5): 106–121. DOI: 10.1109/MSP.2023.3272881

[23] GAO Z, LIU S C, SU Y, et al. Hybrid knowledge-data driven channel se‑
mantic acquisition and beamforming for cell-free massive MIMO [J]. 
IEEE journal of selected topics in signal processing, 2023, 17(5): 964–
979. DOI: 10.1109/JSTSP.2023.3299175

[24] GAO P, LIAN L X, YU J P. Cooperative ISAC with direct localization 
and rate-splitting multiple access communication: a Pareto optimization 
framework [J]. IEEE journal on selected areas in communications, 2023, 
41(5): 1496–1515. DOI: 10.1109/JSAC.2023.3240714

[25] LIU Q, LUO R, LIANG H R, et al. Energy-efficient joint computation 
offloading and resource allocation strategy for ISAC-aided 6G V2X net‑
works [J]. IEEE transactions on green communications and networking, 
2023, 7(1): 413–423. DOI: 10.1109/TGCN.2023.3234263

[26] LEYVA L, CASTANHEIRA D, SILVA A, et al. Cooperative multi-
terminal radar and communication: a new paradigm for 6G mobile net‑
works [J]. IEEE vehicular technology magazine, 2021, 16(4): 38 – 47. 
DOI: 10.1109/MVT.2021.3114138

[27] WU K, PEGORARO J, MENEGHELLO F, et al. Sensing in bi-static 
ISAC systems with clock asynchronism [EB/OL]. [2024-07-02]. http://
arxiv.org/abs/2402.09048

[28] JIA H B, LI X S, MA L. Physical layer security optimization with Cramér-
Rao bound metric in ISAC systems under sensing-specific imperfect CSI 
model [J]. IEEE transactions on vehicular technology, 2024, 73(5): 6980–
6992. DOI: 10.1109/TVT.2023.3347527

[29] LIU F, MASOUROS C. A tutorial on joint radar and communication trans‑
mission for vehicular networks: part I: background and fundamentals [J]. 
IEEE communications letters, 2021, 25(2): 322 – 326. DOI: 10.1109/
LCOMM.2020.3025310

[30] HOSSAIN M A, ELSHAFIEY I, AL-SANIE A. High accuracy GPS-free 
vehicular positioning based on V2V communications and RSU-assisted 
DOA estimation [C]//The 9th IEEE-GCC Conference and Exhibition. 
IEEE, 2017: 1–5. DOI: 10.1109/IEEEGCC.2017.8447999

[31] CHEN K J, QI C H, WANG C X, et al. Beam training and tracking for ex‑
tremely large-scale MIMO communications [J]. IEEE transactions on 
wireless communications, 2024, 23(5): 5048 – 5062. DOI: 10.1109/
TWC.2023.3324176

[32] MENG X, LIU F, MASOUROS C, et al. Vehicular connectivity on com‑

46



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

DU Ruolin, WEI Zhiqiang, YANG Zai 

Integrated Sensing and Communication: Who Benefits More?   Special Topic

plex trajectories: Roadway-geometry aware ISAC beam-tracking [J]. IEEE 
transactions on wireless communications, 2023, 22(11): 7408 – 7423. 
DOI: 10.1109/TWC.2023.3250442

[33] ZHANG J, XI R, HE Y, et al. A survey of mmWave-based human sens‑
ing: technology, platforms and applications [J]. IEEE communications 
surveys & tutorials, 2023, 25(4): 2052 – 2087. DOI: 10.1109/
COMST.2023.3298300

[34] ZHENG B X, YOU C S, MEI W D, et al. A survey on channel estimation 
and practical passive beamforming design for intelligent reflecting sur‑
face aided wireless communications [J]. IEEE communications surveys & 
tutorials, 2022, 24(2): 1035–1071. DOI: 10.1109/COMST.2022.3155305

[35] WEI Z Q, LIU F, LIU C, et al. Integrated sensing, navigation, and com‑
munication for secure UAV networks with a mobile eavesdropper [J]. 
IEEE transactions on wireless communications, 2024, 23(7): 7060 –
7078. DOI: 10.1109/TWC.2023.3337148

[36] MU J S, ZHANG R H, CUI Y H, et al. UAV meets integrated sensing and 
communication: challenges and future directions [J]. IEEE communica‑
tions magazine, 2023, 61(5): 62–67. DOI: 10.1109/MCOM.008.2200510

[37] YU K G, GUO Y J. Statistical NLOS identification based on AOA, TOA, 
and signal strength [J]. IEEE transactions on vehicular technology, 2009, 
58(1): 274–286. DOI: 10.1109/TVT.2008.924975

[38] HE C, DONG Y R, WANG Z J. Radio map assisted multi-UAV target 
searching [J]. IEEE transactions on wireless communications, 2023, 22
(7): 4698–4711. DOI: 10.1109/TWC.2022.3227933

[39] ZENG Y, XU X L. Toward environment-aware 6G communications via 
channel knowledge map [J]. IEEE wireless communications, 2021, 28(3): 
84–91. DOI: 10.1109/MWC.001.2000327

[40] CHEN L Q, TIAN L P, XU Z M, et al. A survey of Wi-Fi sensing tech‑
niques with channel state information [J]. ZTE communications, 2020, 18
(3): 57–63. DOI:10.12142/ZTECOM.202003009

[41] MA Y S, ZHOU G, WANG S Q. WiFi sensing with channel state informa‑
tion: a survey [J]. ACM computing surveys, 2019, 52(3): 1 – 36. DOI: 
10.1145/3310194

[42] GONZÁLEZ-PRELCIC N, MÉNDEZ-RIAL R, HEATH R W. Radar 
aided beam alignment in MmWave V2I communications supporting an‑
tenna diversity [C]//Information Theory and Applications Workshop 
(ITA). IEEE, 2016: 1–7. DOI: 10.1109/ITA.2016.7888145

[43] ZHANG C, GUO D N, FAN P Y. Tracking angles of departure and arrival 
in a mobile millimeter wave channel [C]//IEEE International Conference 
on Communications (ICC). IEEE, 2016: 1 – 6. DOI: 10.1109/
ICC.2016.7510902

[44] VA V, VIKALO H, HEATH R W. Beam tracking for mobile millimeter 
wave communication systems [C]//IEEE Global Conference on Signal and 
Information Processing (GlobalSIP). IEEE, 2016: 743 – 747. DOI: 
10.1109/GlobalSIP.2016.7905941

[45] FRIEDLANDER B. On transmit beamforming for MIMO radar [J]. IEEE 
transactions on aerospace and electronic systems, 2012, 48(4): 3376 –
3388. DOI: 10.1109/TAES.2012.6324717

[46] SEO J, SUNG Y, LEE G, et al. Training beam sequence design for 
millimeter-wave MIMO systems: a POMDP framework [J]. IEEE transac‑
tions on signal processing, 2016, 64(5): 1228 – 1242. DOI: 10.1109/
TSP.2015.2496241

[47] ZHANG D Y, LI A, SHIRVANIMOGHADDAM M, et al. Exploring AoA/
AoD dynamics in beam alignment of mobile millimeter wave MIMO sys‑
tems [J]. IEEE transactions on vehicular technology, 2019, 68(6): 6172–
6176. DOI: 10.1109/TVT.2019.2910307

[48] ZHANG J H, WANG J L, ZHANG Y X, et al. Integrated sensing and com‑
munication channel: measurements, characteristics, and modeling [J]. 
IEEE communications magazine, 2024, 62(6): 98-104. DOI: 10.1109/
MCOM.020.2300165

Biographies
DU Ruolin received her BS degree from the School of Mathematics and Statis‑
tics at Northwestern Polytechnical University, China in 2021. She is currently 
pursuing her PhD degree at the School of Mathematics and Statistics, Xi’an Ji‑
aotong University, China. Her research interests include integrated sensing and 
communications (ISAC) and channel knowledge map (CKM)-assisted sensing.

WEI Zhiqiang (zhiqiang.wei@xjtu.edu.cn) received his BE degree in informa‑
tion engineering from Northwestern Polytechnical University, China in 2012, 
and his PhD degree in electrical engineering and telecommunications from the 
University of New South Wales (UNSW), Australia in 2019. From 2019 to 2020, 
he was a post-doctoral research fellow with UNSW. From 2021 to 2022, he was 
a Humboldt post-doctoral research fellow with the Institute for Digital Commu‑
nications, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Germa‑
ny. He is currently a professor with the School of Mathematics and Statistics, 
Xi’an Jiaotong University, China. He coauthored the IEEE ComSoc Best Read‑
ings on OTFS and Delay Doppler Signal Processing. His current research inter‑
ests include delay-Doppler communications, resource allocation optimization, 
and statistic and array signal processing.

YANG Zai is a professor of the School of Mathematics and Statistics, Xi’an Ji‑
aotong University, China. He received his BS degree in mathematics and MS de‑
gree in applied mathematics from Sun Yat-sen University, China in 2007 and 
2009, respectively, and his PhD degree in electrical and electronic engineering 
from Nanyang Technological University (NTU), Singapore in 2014. He was a re‑
search associate and a research fellow of NTU from June 2013 to December 
2015, and a professor of the School of Automation, Nanjing University of Sci‑
ence and Technology, China from 2016 to 2018. His research interests focus on 
mathematical foundations of information processing and wireless communica‑
tions. He was a leading tutorial presenter at EUSIPCO 2017. He is an IEEE se‑
nior member.

47



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

DAI Qianglong, ZHOU Zhiwen, XIAO Zhiqiang, ZENG Yong, YANG Fei, CHEN Yan 

Special Topic   Low-Complexity Integrated Super-Resolution Sensing and Communication with Signal Decimation and Ambiguity Removal

LowLow--Complexity Integrated SuperComplexity Integrated Super--Resolution Resolution 
Sensing and Communication with Sensing and Communication with 
Signal Decimation and Ambiguity RemovalSignal Decimation and Ambiguity Removal

DAI Qianglong1, ZHOU Zhiwen1, XIAO Zhiqiang1,2,

ZENG Yong1,2, YANG Fei3, CHEN Yan3

(1. National Mobile Communications Research Laboratory, Southeast 
University, Nanjing 210096, China；
 2. Purple Mountain Laboratories, Nanjing 211111, China；
 3. Wireless Technology Lab., 2012 Lab, Shanghai Huawei Technolo⁃
gies Co., Ltd, Shanghai 201206, China)

DOI: 10.12142/ZTECOM.202403007

https://kns.cnki.net/kcms/detail/34.1294.TN.20240812.1649.002.html, 
published online August 13, 2024

Manuscript received: 2024-07-30
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1 Introduction

Integrated sensing and communication (ISAC) has been 
identified as one of the key usage scenarios of the 6G 
communication systems[1]. However, due to the limited 
available wireless resources, the resolution of the classi‑

cal inverse discrete Fourier transform/discrete Fourier trans‑
form (IDFT/DFT) based methods for sensing usually leads to 
poor performance[2]. To address such issues, integrated super-
resolution sensing and communication (ISSAC) has been re‑
cently proposed to maximize the utilization of wireless re‑
sources and significantly enhance the sensing performance of 
ISAC systems[3]. Specifically, the ISSAC system exploits super-
resolution algorithms for radar signal processing to achieve 

super-resolution parameter estimation, such as the angle-of-
arrival (AoA), propagation delay, and the Doppler frequency 
shift of the targets.

On the other hand, orthogonal frequency division multiplex‑
ing (OFDM) is a dominate waveform in the 4G and 5G mobile 
communication systems, and it is expected to continue to play 
an important role in 6G. Consequently, besides dedicated 
waveform designs[4], extensive works on ISAC are still based 
on OFDM systems[2–3, 5–7]. For OFDM waveforms, the delay 
and Doppler estimation can be converted to spectral estima‑
tion problems due to the sum-of-complex-exponential struc‑
ture of its channel matrix[7]. Various methods are proposed for 
OFDM-based sensing, such as the IDFT/DFT-based and 
subspace-based methods. The IDFT/DFT-based methods such 
as the periodogram algorithm[2] can be implemented easily but 
their resolution is limited by the wireless resources available 
for sensing, while the subspace-based methods, such as Mul‑This work was supported by the National Natural Science Foundation of 

China under Grant No. 62071114.
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tiple Signal Classification (MUSIC)[8] and Estimation of Signal 
Parameters via Rotational Invariance Techniques (ESPRIT) [9], 
can achieve super-resolution but suffer from high computa‑
tional complexity. Furthermore, compared with multiple-input 
multiple-output (MIMO) array signals for AoA estimation, the 
dimensions of OFDM signals in the subcarrier and symbol do‑
mains are extremely large. For example, when the number of 
antennas in an array reaches 128 or 512, it is called a massive 
array or an extremely large-scale array (XL-Array), but it is 
common for OFDM signals to have more than 512 subcarriers. 
Therefore, parameter estimation for OFDM waveforms suffers 
from prohibitive computational complexity if conventional 
super-resolution methods are directly applied. Extensive ef‑
forts have been devoted to reducing the complexity of such 
methods, like the ROOT-MUSIC[10–11] algorithm which re‑
places the spectrum search in MUSIC with polynomial rooting, 
or the Propagator Method (PM) [12–13] that replaces the eigen‑
value decomposition by constructing a propagator. However, 
existing methods for complexity reduction are often tailored to 
specific algorithms, and thus their application scenarios are 
limited. Moreover, as these methods still struggle to address 
the high data dimension problem of OFDM signals, their com‑
plexity of delay and Doppler estimation remains high[14–15]. 
Thus, how to reduce the computational complexity for ISSAC 
is still an important problem not fully solved yet.

To address the above issues, we propose a novel and univer‑
sal complexity reduction method for ISSAC systems. The key 
idea of the proposed method is to first reduce the data dimen‑
sions of OFDM signals through uniform and sparse decimation 
of the signals in the subcarrier domain, which significantly re‑
duces the computational complexity without missing any sens‑
ing target. However, the decimation operation involves sparse 
signal resampling, which causes range ambiguity due to 
pseudo peaks. Then, a second stage is conducted to remove 
any ambiguity by checking all potential points individually us‑
ing the total collocated subcarrier data. Due to the periodicity 
of the outputs of both IDFT/DFT-based and subspace-based 
methods[6], all the targets can be estimated using only a small 
subset of subcarriers, although range ambiguity may occur. 
Thus, we can first select a subset of the equidistance sparse 
subcarriers to reduce the data dimension, and then validate 
the estimated results using all the available subcarriers to re‑
move any ambiguity. By utilizing the equidistance sparse data 
with lower subcarrier domain dimension in the first stage, the 
proposed method can achieve low-complexity range estimation 
with resolution equivalent to utilizing all the available data. 
Moreover, the proposed method is not only applicable to tradi‑
tional super-resolution algorithms but also further reduces the 
complexity of existing low-complexity algorithms, e. g., PM-
MUSIC and ROOT-MUSIC. Complexity analysis and simula‑
tion analysis are performed to verify the effectiveness of the 
proposed scheme. Numerical results demonstrate that the com‑
plexity of the proposed scheme is two orders of magnitude 

lower than the traditional MUSIC algorithm in minimal sens‑
ing performance degradation.
2 System Model

As shown in Fig. 1, we consider a mono-static OFDM-based 
ISSAC system, where a base station (BS) serves multiple com‑
munication user equipment (UE), and simultaneously senses 
multiple targets via the echoes of its transmitted signals. Note 
that the radar cross sections (RCSs) of communication UE are 
much smaller than those of the sensing targets, whose echoes 
are relatively small and can be neglected. The BS is equipped 
with Mt transmit antennas and a single radar receiving an‑
tenna. As we mainly focus on the range-Doppler sensing, ana‑
log beamforming is considered for the BS.

The BS transmits OFDM signals with N subcarriers and M 
OFDM symbols. The subcarrier spacing and the OFDM symbol 
duration with the cyclic prefix (CP) are denoted by Δf and Ts. The OFDM symbol duration without CP is T = 1/Δf, the dura‑
tion of CP is Tcp = Ts - T, and the system bandwidth is B =
NΔf. Therefore, the time-domain sequence of the m-th OFDM 
symbol transmitted by the BS before beamforming is

xm[ q] = 1
N

∑
n = 0

N - 1
bn,m ej2πnq/N

, (1)
where q = 0,1,⋯,N - 1, and bn,m denotes the transmitted data 
on the n-th subcarrier of the m-th OFDM symbol.

Assuming that there are K targets for sensing. The range 
and the radial velocity of the k-th target are denoted by Rk and 
vk, where k = 1,2,⋯, K. Then, the delay and the Doppler fre‑
quency shift of the k-th target are τk = 2Rk /c = nk

1
B  and fdk =

2fc vk /c, where c denotes the signal propagation speed and fc is 
the carrier frequency. To avoid inter-symbol interference (ISI), 
the maximum delay of the targets is assumed to be smaller 
than the CP duration. Moreover, the subcarrier spacing is as‑
sumed to be at least one order of magnitude larger than the 
largest Doppler frequency shift[7]. Note that mono-static ISAC 
systems necessitate full-duplex operation of the transmitter 

BS: base station     UE: user equipment
▲ Figure 1. An illustration of the mono-static integrated super-
resolution sensing and communication (ISSAC) system

BS
UE

UE

Target

Target
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and the radar receiver, making them vulnerable to self-
interference (SI) due to imperfect isolation. Various methods 
have been proposed to address this issue, such as a combina‑
tion of analog and digital cancellers[4]. After SI cancellation 
and CP removal, the time-domain sequence of the m-th re‑
ceived OFDM symbol is

ym[ q] = ∑
k = 1

K

γk xm[ q - nk ] ej2πmTs fdk + ωm[ ]q =

∑k = 1
K ∑n = 0

N - 1 γkbn,m e
j2π ( )nq

N - nΔfτk + mTs fdk + ωm[ q], (2)
where γk = 1

N
aH(θk )wγ͂k, w ∈ CMt × 1 represents the trans‑

mit beamforming vector, a (θk ) ∈ CMt × 1 and γ͂k denotes the ar‑
ray steering vector with angle of departure (AoD) θk and the 
complex reflection coefficient of the k-th target, and ωm [ q ] is 
the corresponding additive white Gaussian noise (AWGN) 
plus the residual SI.

Then, ym [ q ] can be rearranged into a matrix Y ∈ CN × M via 
DFT, and the (n,m)-th element of Y is
Y (n,m) = 1

N ∑
q = 0

N - 1
ym[ q] e

- j2πnq
N =

bn,m∑
k = 1

K

γk e- j2πnΔfτk ej2πmTs fdk + -ω n,m, (3)
where -ω n,m is the resulting noise.

Since the transmitted data bn,m is known by the BS, it can be 
removed via element-wise division. By doing so, the data ma‑
trix Y͂ (n,m) ∈ CN × M for radar processing is
Y͂ (n,m) = Y (n,m )

bn,m
= ∑

k = 1

K

γk e- j2πnΔfτk ej2πmTs fdk + -ω'
n,m ∈ CN × M

,
(4)

where -ω'
n,m =

-ω n,m
bn,m

. Therefore, the amplitude γk, the propaga‑
tion delay τk, and the Doppler fdk can be estimated with vari‑
ous estimation algorithms by utilizing the data matrix Y͂.

Due to the large dimensions of the data matrix Y͂, the com‑
putational complexity for parameter estimation is signifi‑
cantly high, especially for super-resolution algorithms like 
MUSIC. However, by exploiting the periodicity of the outputs 
of both IDFT/DFT-based and subspace-based methods, all 
the targets in the range domain can be estimated through 
sparse data in lower dimensions, although ambiguity may oc‑
cur. This motivates us to reduce the computational complex‑
ity for parameter estimation by decimation, if the ambiguity 
can be removed. In the following section, we uniformly deci‑
mate the subcarrier domain data of the data matrix Y͂ in Eq. 
(4) to reduce data dimension, and then exploit the range peri‑

odogram of decimated sparse data to analyze the relationship 
among the range resolution, the maximum unambiguous 
range and the decimation interval.
3 Ambiguity and Resolution Analysis

Since signal processing methods for range and Doppler es‑
timations are similar, in the following, we focus on range esti‑
mation and assume all the targets are stationary, while the 
proposed method and analysis results can be directly applied 
to the Doppler counterparts. By uniformly decimating the 
subcarrier domain data of the data matrix Y͂ in Eq. (4) with a 
step size of η, the decimated sparse data matrix can be ex‑
pressed as
Y͂ sp(nsp,m) = Y͂ (nsp η,m) = ∑

k = 1

K

γk e- j2πnspηΔfτk + -ω'
nspη,m, (5)

where nsp = 0,1,⋯,N sp - 1, and N sp = ê
ë
êêêê

ú
û
úúúú

N
η  denotes the num‑

ber of subcarriers in the decimated sparse data.
Then, the IDFT is applied to each column of Y͂ sp, and the 

periodogram can be obtained by

F (τ ; η) = |

|

|
||
|
|
| 1
M ∑

m = 0

M - 1 1
N sp ∑

nsp = 0

N sp - 1
Y͂ sp( )nsp,m ej2πnsp ηΔfτ

|

|

|
||
|
|
|
2

. (6)
The peaks of F (τ ; η) correspond to the ranges of targets, 

where τ = 2R
c  denotes the observation delay, and R denotes 

the observation range. When η = 1, the ranges of targets are 
estimated with the total collected data, while for η > 1, they 
are obtained with the decimated sparse data.

By ignoring the noise and substituting Eq. (5) into Eq. (6), 
the periodogram of decimated sparse data for range sensing 
can be obtained by

F (Δτk ; η) =
|

|

|
||
|
|
|∑

k = 1

K

γk e- jπ ( )N sp - 1 ηΔfΔτk
sin ( )πNΔfΔτk

N sp sin ( )πηΔfΔτk

|

|

|
||
|
|
|
2

, (7)

where Δτk = 2Δk

c  denotes the delay difference, Δk = R -
Rk ∈ [ - dunamb,dunamb ] denotes the range difference between 
the observation range R and the target range Rk, and dunamb =

c
2Δf

 denotes the maximum unambiguous range of OFDM radar 
with the subcarrier spacing Δf. It is observed from Eq. (7) that 
the range sensing for arbitrary target k is critically dependent 
on the function Gη(Δk ) = |

|

|
||
|
|
| sin (2πNΔfΔk /c )
N sp sin (2πηΔfΔk /c )

|

|

|
||
|
|
|
2
, which has 

the following properties.
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Main lobe: Let 2πNΔfΔ/c = ±π or Δ = ± c
2NΔf

, Gη(Δ) = 0. 
Then the null-to-null width of the main lobe can be obtained as

BW = c
NΔf . (8)

Typically, the range resolution can be defined as a half of 
the main lobe width. Therefore, the range resolution of deci‑
mated sparse data is:

Δres
r = 1

2 BW = c
2NΔf

= c
2B . (9)

Grating lobe: When η > 1, grating lobes with the same am‑
plitude and width as the main lobe exist, and the locations of 
the grating lobes can be obtained by letting 2πηΔfΔ

c =
nπ, n = ±1,±2,⋯,±η. Then the n-th grating lobe is located at:

Δ = nc
2ηΔf

,n = ±1,±2,⋯,±η. (10)
The grating lobes reflect the periodicity of the periodogram, 

which will cause range ambiguity. The maximum unambigu‑
ous range achieved utilizing the decimated sparse data is the 
grating lobe interval dspunamb = c

2ηΔf
.

For N = 128 and Δf = 120 kHz, Figs. 2(a) and 2(b) illus‑
trate the range periodograms for collocated subcarrier data 
and decimated sparse data. It is observed that the decimated 
sparse data can achieve the same range resolution as the total 
collocated subcarrier data, while the maximum unambiguous 

range reduces inversely proportional to the decimation inter‑
val η. Similarly, when the decimated sparse data are applied 
in super-resolution algorithms, the range ambiguity exists and 
the range resolution remains. Moreover, the computational 
complexity of super-resolution algorithms is significantly high, 
especially for OFDM signals with high data dimensions. 
Therefore, it is necessary to propose low-complexity schemes 
utilizing lower-dimension decimated sparse data and periodic 
extension, while maintaining high range resolution. In the fol‑
lowing section, we propose a two-stage scheme, which com‑
bines the advantages of collocated subcarrier data and deci‑
mated sparse data, to achieve low-complexity and unambigu‑
ous range sensing.
4 Range Sensing

4.1 Proposed Two-Stage Scheme
The two-stage scheme is shown in Fig. 3. In the first stage, 

we uniformly and sparsely decimate the subcarrier domain 
data from the matrix Y͂ in Eq. (4) with decimation interval η. 
Thus, the range resolution and maximum unambiguous range 
of the decimated sparse data are Δres, sp

r = c
2B

 and dspunamb =
c

2ηΔf
, respectively. By utilizing the decimated sparse data, all 

the possible ranges with ambiguity can be estimated. In the 
second stage, the range resolution and maximum unambiguous 
range of the total collocated data are Δres

r = c
2B

 and dunamb =
c

2Δf
, and thus the range ambiguity can be removed by exploit‑

ing the collocated subcarrier data to check each range estima‑

▲Figure 2. Range periodograms of: (a) Collocated subcarrier data with the number of subcarriers N = 128 and (b) Decimated sparse data with deci⁃
mation interval η = 4
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tion obtained in the first stage individually. Therefore, the two-
stage scheme can achieve range resolution equivalent to utiliz‑
ing the total collocated data in Eq. (4) without range ambigu‑
ity, while the computational complexity is much lower.
4.2 Proposed Two-Stage Algorithm

In this subsection, a novel two-stage algorithm based on 
MUSIC is proposed. To eliminate high correlation between 
echo signals of the targets, modified spatial smoothing prepro‑
cessing (MSSP)[16] is performed in the subcarrier domain of the 
data matrix Y͂. Specifically, the smoothing window size is NL =
ρN, ρ = 0.5, and the number of submatrices is Nsub = N -
NL + 1. Thus, the data matrix Ŷ ∈ CNL × Nsub M after MSSP can 
be obtained by:

Ŷ =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úy͂1 ⋯ y͂Nsub

⋮ ⋱ ⋮
y͂NL

⋯ y͂Nsub + NL . (11)
Then, the signal and noise subspaces can be obtained via 

eigenvalue decomposition (EVD) of the covariance matrix of 
the data matrix Ŷ, which is expressed as:
R

Ŷ
= 1

Nsub M ŶŶ H = EsΛsE
H
s + EnΛnE

H
n , (12)

where Λ s denotes the diagonal matrix composed of the largest 
K eigenvalues, and Es and En denote the signal subspace and 
noise subspace. Thus, the MUSIC spectrum for range estima‑
tion can be expressed as:
PMUSIC ( R ) = 1

aH
r EnE

H
n ar , (13)

where ar = [1,e- j2πΔfτ,⋯,e- j2π(NL - 1)Δfτ ] T, τ = 2R
c  denotes the 

steering vector in delay dimension, R denotes the observation 
range, and c denotes the wave propagation speed. The peaks 
of the MUSIC spectrum correspond to the ranges of the tar‑
gets. The proposed two-stage algorithm works as follows. In 
the first stage, the possible ranges of the targets are obtained 
by first utilizing the MUSIC algorithm on the decimated matrix 
Y͂ sp and then periodically extending the peaks with interval 
dspunamb. In the second stage, the MUSIC spectrum of collocated 
subcarrier data matrix Y͂ is exploited to remove the range am‑
biguity, where the spectral values remain large at the true 
peaks and sharply decrease at the pseudo peaks. The detailed 
steps of the proposed algorithm are shown in Algorithm 1.
Algorithm 1. MUSIC based low-complexity two-stage algorithm
Inputs: total collocated subcarrier data matrix Y͂;
    the decimation interval η.
Outputs: estimated range r̂.
  //Stage 1. Sparse estimation
1. Y͂ sp = Y͂ (1:η:N,:);
2. N sp

L = ρN sp, N spsub = N sp - N sp
L + 1;

3. Obtain sparse data matrix after MSSP Ŷ sp;
4. R

Ŷ sp = 1
N spsub M

Ŷ spŶ spH;
5. R

Ŷ sp = E sp
s Λ

sp
s E

spH

s + E sp
n Λ

sp
n E

spH

n ;
6. r̂1 = findpeaks

[ 0,dspunamb ]  
1

aspH

r E sp
n E

spH

n asp
r

;

7. K = length ( r̂1 ) ,P = é

ê

ê
êê
ê ù

ú

ú
úú
údmax

dspunamb
;

8. r̂'1 = ones(1,P ) ⊗ r̂1 + dspunamb(0:P - 1) ⊗ ones(1,K );
  // Stage 2. Ambiguity removal
9. NL = ρN, Nsub = N - NL + 1;
10. Obtain sparse data matrix after MSSP Ŷ;
11. R

Ŷ
= 1

Nsub M ŶŶ H;
12. R

Ŷ
= EsΛsE

H
s + EnΛnE

H
n ;

13. PMUSIC( r̂'1 ) =  1
aH

r EnE
H
n ar

;
14. Obtain the verified spectral peaks r̂;
15. return r̂.

The two stages of Algorithm 1 can be explained as follows. 
In the first stage, all possible ranges of targets are found via 
the MUSIC spectrum of the decimated sparse data and peri‑
odic extension. Specifically, in Step 1, the decimated sparse 
data matrix Y͂ sp is obtained by uniformly decimating the total 
collocated OFDM data matrix Y͂ with a step size of η. Then, 
MSSP is performed on Y͂ sp in Steps 2–3, and MUSIC is per‑
formed in the maximum unambiguous range of decimated 
sparse data dspunamb = c

2ηΔf
 to obtain the coarse range estimation 

r̂1 in Steps 4 – 6. Subsequently, as shown in Steps 7 – 8, all 

▲Figure 3. Illustration of the two-stage scheme
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possible ranges of targets r̂'1 are obtained by periodic extension 
of spectral peaks r̂1 searched by MUSIC, where dmax denotes the 
maximum detection range of OFDM radar, P = é

ê

ê
êê
ê ù

ú

ú
úú
údmax

dspunamb
 de‑

notes the number of extended periods, and ⊗ denotes the Kro‑
necker product. In the second stage, all possible ranges of tar‑
gets are verified by the MUSIC spectrum of the collocated sub‑
carrier data individually to remove the range ambiguity. As is 
shown in Steps 9–10, MSSP is performed on Y͂. Then, calcula‑
tion and eigenvalue decomposition of the connivance matrix are 
performed in Steps 11 – 12. Finally, all possible ranges in 
r̂'1 are verified by the MUSIC spectrum of the collocated subcar‑
rier data point-by-point, where the spectral values at the true 
peaks are large, as is shown in Steps 13–14.

The range estimation result of the proposed scheme and tra‑
ditional MUSIC is shown in Fig. 4. As shown by the black 
solid line, spectrum search is performed in the maximum un‑
ambiguous range for decimated sparse data in the first stage. 
Then, all possible ranges of targets are obtained by periodic 
extension, as shown by the red dashed line. Finally, in the sec‑
ond stage, the MUSIC pseudospectrum of the total collocated 
subcarrier data is used to check each possible range to remove 
any ambiguity, as shown by the blue solid line. The lower data 
dimension of decimated sparse data, smaller range for spec‑
trum search, and limited points to be checked by the total col‑
located subcarrier data make the complexity of the proposed 
two-stage scheme much lower than that of the traditional 
MUSIC. In the following part, numerical results are provided 
to compare the complexity of the proposed scheme and the tra‑
ditional MUSIC.
4.3 Computational Complexity Analysis

For the MUSIC algorithm, the computational complexity for 

calculating the covariance matrix is O (MN 2 ), and the com‑
plexity of eigenvalue decomposition and spectrum search is 
O (N 3 ) and O ((2N (N - K ) + N ) r ), respectively. Thus, the 
complexity of traditional MUSIC after spatial smoothing is 
O (Nsub MN 2

L + N 3
L + (2NL(NL - K ) + NL ) r), where r denotes 

the number of points calculated in the peak search. Assuming 
the proposed scheme is applied to MUSIC, the complexity of 
the two stages of the proposed scheme is O (N sp

sub MN sp
L

2 +
N sp

L
3 + (2N sp

L (N sp
L - K ) + N sp

L ) r') and O (Nsub MN 2
L + N 3

L +
(2NL(NL - K ) + NL ) KP ).

Assume the number of total collocated subcarriers is N =
1 024, the number of OFDM symbols is M = 112, the maxi‑
mum detection range of OFDM radar is dmax = 300 m, the step 
size for spectrum search is 0.01 m, and the number of targets 
is K = 3. Then a comparison of the complexity of traditional 
MUSIC, PM-MUSIC and the proposed scheme with different 
decimation intervals η is provided in Table 1. It is observed 
that the PM-MUSIC algorithm can only slightly reduce the 
computational complexity of the MUSIC algorithm. The pro‑
posed scheme, however, can not only significantly reduce the 
complexity of MUSIC, but also further reduce the complexity 
of PM-MUSIC.
5 Simulation Results

In this section, the performance of the two-stage algorithms 
is verified. The relevant parameter settings are as follows. The 
subcarrier spacing is Δf = 120 kHz, the total number of sub‑
carriers is N = 1 024, and thus the total bandwidth is B =
122.88 MHz. Moreover, the number of OFDM symbols is M =
112, the maximum detection range of OFDM radar is dmax =
300 m, and the number of targets is K = 3.

As is shown in Fig. 5(a), a comparison of MUSIC, PM-
MUSIC, and the proposed scheme in terms of root mean 
square error (RMSE) of the range estimations is provided. It 
is observed that the RMSEs of the proposed scheme are at 
the centimeter level, that is, the proposed algorithms can 
achieve comparable range estimation accuracy with tradi‑
tional MUSIC and PM-MUSIC. In Fig. 5(b), the RMSEs of Al‑
gorithm 1 with different decimation intervals η are provided. 
It is observed that at low SNR levels, the estimation accuracy 

MUSIC: Multiple Signal Classification
▲Figure 4. Range estimation result of the proposed scheme and tradi⁃
tional MUSIC

▼Table 1. Computational complexity analysis
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of the proposed scheme slightly decreases as the decimation 
interval increases.
6 Conclusions

In this paper, we reduce the computational complexity of 
range estimation by uniformly decimating in the subcarrier do‑
main, and derive the mathematical relationship between range 
resolution, maximum unambiguous range and the decimation 
interval. Then, a two-stage scheme is proposed to achieve low-
complexity high-resolution range estimation while maintaining 
the unambiguous range, which first exploits the low-dimension 
data matrix to reduce computational complexity, and then re‑
moves the range ambiguity utilizing total collocated subcarrier 

data. Finally, we compare the complexity and performance of 
the proposed scheme with traditional MUSIC and PM-MUSIC, 
and the results show that the proposed two-stage scheme can 
significantly reduce the complexity of range estimation with 
minimal performance degradation. Besides, the proposed 
scheme can be easily adapted to super-resolution algorithms 
for Doppler and AoA estimation.
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Abstract: An integrated sensing and communication (ISAC) scheme for a millimeter wave (mmWave) multiple-input multiple-output or‑
thogonal frequency division multiplexing (MIMO-OFDM) Vehicle-to-Infrastructure (V2I) system is presented, in which both the access 
point (AP) and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to com‑
pensate the path loss, meanwhile compromise between hardware complexity and system performance. Based on the sparse scattering na‑
ture of the mmWave channel, the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure. A 
CANDECOMP/PARAFAC (CP) decomposition-based method is proposed for time-varying channel parameter extraction, including angles 
of departure/arrival (AoDs/AoAs), Doppler shift, time delay and path gain. Then leveraging the estimates of channel parameters, a nonlin‑
ear weighted least-square problem is proposed to recover the location accurately, heading and velocity of vehicles. Simulation results 
show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMO-
OFDM V2I systems.
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1 Introduction

Due to the large available bandwidth and small wave‑
length, millimeter wave (mmWave) communication 
technology has received much attention. To compen‑
sate for the severe path loss of mmWave systems, 

large antenna arrays are usually used at the transmitter and 
receiver to provide sufficient beamforming gain for mmWave 
communications. However, to obtain the directional beam 
gain, accurate channel information needs to be realized by 
channel estimation[1–5].

In recent years, the millimeter-wave channel estimation 
problem has been widely investigated. By exploring its spar‑
sity in the angular domain, the millimeter-wave channel esti 
mation problem is equivalent to a sparse signal recovery 
problem, which can be solved with the help of compressive 
sensing tools[6]. It has been shown in Refs. [6–7] that a sub‑

stantial reduction in training overhead can be achieved via 
compressed sensing methods. Also, a low-complexity chan‑
nel estimation algorithm was proposed by exploiting the 
strongest angles of arrival in mmWave channels[8]. Besides, 
the authors in Ref. [9] exploited the delay-domain sparsity 
of wideband channels and a sparse signal recovery-based 
scheme was proposed for channel estimation. Moreover, 
tensor-based channel estimation was introduced in Refs. 
[10] and [11], which exploited the multi-dimensional charac‑
teristics of the mmWave multiple-input multiple-output 
(MIMO) channels with the low-rank property. Specifically, 
the received signal was organized to a third-order tensor, 
and a CANDECOMP/PARAFAC (CP) decomposition-based 
method was proposed to estimate channel parameters includ‑
ing angles of departure/arrival (AoDs/AoAs), time delays, 
and fading coefficients. However, in practice, the wireless 
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transceivers may have high-speed relative movements, e. g., 
high-speed trains[12], unmanned aerial vehicles (UAVs) [13] 
and vehicle-to-everything (V2X) networks[14]. In particular, 
the high-speed relative movements introduce severe Dop‑
pler effects on the multiple propagating paths and result in a 
time-varying multipath mmWave channel. To enable high 
data rate transmissions for high mobility, the time-varying 
mmWave channel estimation has been studied in Refs. [15–
16]. In Ref. [15], the time-varying channel estimation was di‑
vided into two separate stages including AoA/AoD estima‑
tion and followed by a path gain estimation. Also, by re-
arranging the received signal, a canonical polyadic decom‑
position (CPD) -based method was developed in Ref. [16] to 
estimate the time-varying mmWave channel.

The relative position and relative velocity of the transmit‑
ter and the receiver are known as channel estimations that 
give information on the AoA/AoD and the Doppler shift. Fur‑
thermore, the location information may be utilized as a stand-
in for channel information to enable beamforming. This 
means that if the position of the mobile station (MS) is 
known, the AP can steer its transmission to the MS, either di‑
rectly or via a reflective path. Further, the velocity informa‑
tion can be utilized to predict the position of MS, which 
helps the AP to perform beam alignment efficiently. This 
leads to synergies between communication and sensing. Pre‑
vious works in Refs. [17 – 19] for millimeter waves and in 
Refs. [20 – 21] for massive MIMO explored using 5G tech‑
niques to acquire location and orientation. Ref. [17] consid‑
ered estimating and tracking AoA by beam switching. The 
MS localization was formulated as a hypothesis-testing prob‑
lem in Ref. [18]. Besides, Ref. [19] obtained meter-level po‑
sitioning accuracy by measuring received signal strength lev‑
els. In the massive case, Ref. [20] addressed the estimation 
of angles, while Ref. [21] considered the joint delay and 
AoD/AoA estimation in the line-of-sight (LoS) conditions, 
and the impact of errors in delay and phase shifters was also 
analyzed.

In this paper, we consider the integrated sensing and com‑
munications for a millimeter wave MIMO-orthogonal fre‑
quency division multiplexing (MIMO-OFDM) Vehicle-to-
Infrastructure (V2I) system. Specifically, we formulate the 
time-varying mmWave channel model for a MIMO-OFDM 
system and propose a novel frame structure. The received 
signal in the training stage is organized to a four-order ten‑
sor, and then a CP decomposition-based method is intro‑
duced to estimate the channel parameters. After the channel 
parameters in each AP are available, a nonlinear weighted 
least-square problem is proposed to recover the location, 
heading and velocity of the vehicle accurately.
2 System Model

We consider an uplink V2I mmWave OFDM system, 
where each access point (AP) is equipped with a uniform lin‑

ear array (ULA) of Nr antennas and the vehicle is equipped 
with a ULA with Nt antennas. The system is assumed to oper‑
ate at a carrier frequency fc and the total number of OFDM 
tones (subcarriers) is Q̄. The q-th subcarrier shift is fq = qfs

Q̄
, 

where fs is the sampling rate. The duration time of an OFDM 
symbol is set to Tsym. The vehicle is moving at a certain 
speed, and the relative motion between the AP and the ve‑
hicle gives rise to the Doppler effect, which in turn leads to 
time-varying channels.
2.1 Time-Varying Channel Model

Due to the sparse scattering characteristic of mmWave 
channels, we adopt a geometric wideband mmWave channel 
model to characterize the channel between the AP and the 
vehicle[22]. Specifically, considering the Doppler shift caused 
by the vehicle’s mobility, the frequency-domain mmWave 
channel associated with the q-th subcarrier at the t-th time 
instant can be expressed as follows[15, 23].
Hq ( t ) = ∑

l = 1

L

βt,l aR (ϕl )aH
T (θl )e- j2πfqτl ej2πνl t, (1)

where L represents the number of signal paths, βt,l, θl, ϕl, τl and νl denote the complex path gain, AoD/AoA, time delay, 
and Doppler shift of the l-th path, respectively. The Doppler 
shift can be calculated as νl = vl fc /c, where vl is the radial 
velocity (i.e. the component of velocity along the line of sight 
to the observer) of the l-th path, and c represents the speed 
of light. Here we assume the path gain βt,l remains unaltered 
during one OFDM frame, where the frame structure will be 
elaborated later. Also, we assume that the angle parameters 
such as AoAs and AoDs remain unchanged within the frame, 
as these parameters depend only on the relative positions of 
the AP, the vehicle, and the scatterers[2]. The steering vec‑
tors of the vehicle and the AP are represented by 
aT (θ ) ∈ CNt and aR (ϕ ) ∈ CNr, which are given as

aT (θ ) ≜ 1
Nt

é

ë

ê
êê
ê1,ej 2π

λc
d sin (θ ) ,⋯,ej 2π

λc
d (Nt - 1) sin (θ )ù

û

ú
úú
ú

T

, (2)

aR (ϕ ) ≜ 1
Nr

é

ë

ê
êê
ê1,ej 2π

λc
d sin (ϕ ) ,⋯,ej 2π

λc
d (Nr - 1) sin (ϕ )ù

û

ú
úú
ú

T

, (3)
where d denotes the distance between two adjacent antenna 
elements, and typically d is set to be half of the signal wave‑
length.
2.2 Uplink Transmission and Signal Model

We assume that hybrid analog and digital beamforming 
structures are employed by both the vehicle and the AP. Spe‑
cifically, the vehicle and the AP are respectively equipped 
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with Mt ≤ Nt and Mr ≤ Nr radio frequency (RF) chains. At 
each time instant, the pilot symbol of each subcarrier sq ( t ) is 
first precoded by a baseband precoding vector fD,q ( t ) ∈ CMt. 
Then the symbol blocks are converted to a time domain by 
Mt Q̄-point inverse discrete Fourier transforms (IDFTs). Af‑
ter that, the cyclic prefix is added and then followed by an 
analog RF beamformer FA ( t ) ∈ CNt × Mt, which is common for 
all subcarriers. Finally, the signal transmitted at the q-th 
subcarrier can be written as:
xq ( t ) = FA ( t ) fD,q ( t ) sq ( t ) ≜ fq ( t ) sq ( t ), (4)

where fq ( t ) ≜ FA ( t ) fD,q ( t ) denotes the hybrid precoding vec‑
tor.

At each AP, the received signal is first combined with an 
RF combiner WA ( t ) ∈ CNr × Mr, which is common for all sub‑
carriers. After the cyclic prefix is removed, the symbols are 
transformed to the frequency domain by Mr Q̄-point DFTs 
and then the symbols associated with the q-th subcarrier are 
combined by a digital baseband combining matrix 
WD,q ( t ) ∈ CMr × M, where M ≤ Mr. With the assumption of per‑
fect time synchronization, the received signal at the q-th sub‑
carrier can finally be written as:
yq ( t ) = W HD,q ( t )W HA ( t ) (Hq ( t )xq ( t ) + nq ( t ) ) ≜
W H

q ( t )Hq ( t ) fq ( t ) sq ( t ) + W H
q ( t )nq ( t ) , (5)

where Wq ( t ) ≜ WA ( t )WD,q ( t ) denotes the hybrid combining 
matrix, and nq ( t ) ∈ CNr~CN (0,σ2

n ) is the additive white 
Gaussian noise.

Our objective is to estimate the channel parameters in‑
cluding the complex gain, AoA, AoD, time delay and the 
Doppler shift for each path. After the channel parameters 
are estimated, the obtained channel state information is fur‑
ther used for estimating the location, speed and heading of 
the target vehicle. In the following section, we propose a 
novel training protocol that allows to express the received 
signal as a fourth-order tensor that admits a CPD.
3 Proposed Approach

3.1 CP Formulation
To facilitate the algorithmic development, we first propose 

a new frame structure, where each frame is divided into Kf subframes, and each subframe consists of P OFDM symbols. 
The first K subframes are used for channel estimation, and 
the rest Kf - K subframes are used for data transmission. For 
each frame, the frequency-domain channel associated with 
the q-th subcarrier at a certain time, e.g., at the p-th symbol 
of the (k + 1)-th subframe, can be expressed as:
Hq [(kP + p)Tsym ] = ∑

l = 1

L

βl aR (ϕl )aH
T (θl )e- j2πfqτl ej2πνl (kP + p)Tsym. (6)

For notational convenience, Hq [ (kP + p )Tsym ] is also de‑
noted by Hq [ k, p ]. Similarly, we use FA [ k, p ], fD,q [ k, p ], and 
sq [ k, p ] to respectively represent FA [ (kP + p )Tsym ], 
fD,q [ (kP + p )Tsym ], and sq [ (kP + p )Tsym ].

In the channel estimation stage, we suppose FA [ k,p ] =
FA [ p ], fD,q [ k,p ] = fD [ p ] and sq [ k,p ] = s [ p ] = 1. Thus, we 
have:
xq [ k,p ] = f [ p ] . (7)
Similarly, we suppose WA [ k,p ] = WA [ p ], WD,q [ k,p ] =

WD [ p ], and let W = W [ p ] ≜ WA [ p ]WD [ p ]. Consequently, 
the received signal at the q-th symbol of the k-th subframe 
can be expressed as:
yq [ k, p ] = W HHq [ k,p ] f [ p ] + W Hnq [ k, p ]. (8)
We define
Hq,l [ k ] ≜ βlaR (ϕl )aH

T (θl )e- j2πfqτl ej2πνl kPTsym. (9)
We can express Hq [ k, p ] as：

Hq [ k, p ] = ∑
l = 1

L

Hq,l [ k ] ej2πνl pTsym. (10)
For each subcarrier, we collect signals received at each 

subframe and define 
Yk,q ≜ [ yq [ k,1 ]  ⋯ yq [ k,P ] ] ∈ CM × P. We can express 
Yk,q as:
Yk,q = ∑

l = 1

L

W HHq,l [ k ] FΞνl
+ Nk,q, (11)

where F ≜ [ f [1 ]⋯f [ P ] ] ∈ CNt × P, Ξνl
≜ diag ( g͂ (νl )), and

g͂ (νl ) ≜ [ ej2πνlTsym  ⋯ ej2πνl PTsym ]T ∈ CP. (12)
Substituting Eq. (9) into Eq. (11), we obtain:
Yk,q = ∑

l = 1

L

βl e- j2πfqτl ej2πνl kPTsymWHaR (ϕl )aH
T (θl )FΞνl

+ Nk,q =

∑
l = 1

L

βl e- j2πfqτl gk (νl )WHaR (ϕl )aH
T (θl )FΞνl

+ Nk,q =

∑
l = 1

L

βl e- j2πfqτl gk (νl )a͂R (ϕl )a͂T (θl,νl ) + Nk,q  , (13)
where a͂T (θl,νl ) ≜ Ξ H

νl
FHaT (θl ) ∈ CP, gk (νl ) ≜ ej2πνl kPTsym and 

a͂R (ϕl ) ≜ W HaR (ϕl ) ∈ CM.
For each subcarrier, the received signal collected from all 

K subframes can naturally be organized as a third-order ten‑
sor Yq ∈ CM × P × K. Note that each slice of the tensor Yq, Yk,q, is a weighted sum of a common set of rank-one outer prod‑
ucts. Therefore, the tensor Yq admits a CP decomposition 
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that decomposes a tensor into a sum of rank-one component 
tensors, i.e.,

Yq = ∑
l = 1

L

βl e- j2πfqτl a͂R (ϕl ) ∘ a͂T (θl,νl ) ∘ g (νl ) + Nq, (14)
where g (νl ) ≜ [ ej2πνl PTsym  ⋯ ej2πνl KPTsym ]T ∈ CK. Further‑
more, the received signal associated with all Q subcarriers 
can be constructed as a fourth-order tensor Y ∈ CM × P × K × Q, 
which also admits a CP decomposition as follows.
Y = ∑

l = 1

L

a͂R (ϕl ) ∘ a͂T (θl,νl ) ∘ g (νl ) ∘ βl f (τl ) + N, (15)
where f (τl ) ≜ [ e- j2πf1τl  ⋯ e- j2πfQτl ]T ∈ CQ. The four modes 
of the tensor Y ∈ CM × P × K × Q stand for the received data 
stream, the OFDM symbol, the subframe and the subcarrier, 
respectively.

Due to the sparse scattering characteristics of mmWave 
channels, the CP rank of the fourth-order tensor, equivalent 
to the number of signal paths, is small. Therefore, it is ex‑
pected that the CPD of Y  is unique for moderate values of 
M, P, K, and Q. Since the training overhead is equal to PKQ, 
it means that only a small amount of training overhead is 
needed to uniquely obtain the factor matrices of the tensor 
Y. After the factor matrices are obtained, the channel param‑
eters can be readily extracted. Before proceeding, we define 
the four factor matrices as:
A ≜ [ a͂R (ϕ1 ),⋯,a͂R (ϕL ) ] ∈ CM × L,
B ≜ [ a͂T (θ1,νl ),⋯,a͂T (θL,νL ) ] ∈ CP × L,
C ≜ [ g (ν1 ),⋯,g (νL ) ] ∈ CK × L,
D ≜ [ β1 f (τ1 ),⋯,βL f (τL ) ] ∈ CQ × L . (16)

3.2 CP Decomposition
We commence with the number of paths which is known 

or has been estimated a priori. The CP decomposition of C 
can be accomplished by solving the following optimization 
problem.

min
Â,B̂,Ĉ,D̂







 





Y - ∑

l = 1

L

â l ∘ b̂ l ∘ ĉ l ∘ d̂ l

2

F, (17)
where Â = [ â l,⋯,âL ], B̂ = [ b̂ l,⋯,b̂L ], Ĉ = [ ĉ l,⋯,ĉL ], D̂ =
[ d̂ l,⋯,d̂L ] and ‖ ⋅ ‖F denotes the Frobenius norm. The 
above optimization problem can be readily solved by an al‑
ternating least squares (ALS) procedure. Specifically, ALS 
alternatively minimizes the data fitting error with respect to 
one of the factor matrices, with the other three factor matri‑
ces fixed. The t-th iteration can proceed as

Â( t + 1) = arg min
Â



 


Y (1) - Â ( )D̂( t - 1)⊙Ĉ ( t - 1)⊙B̂( t - 1) T 2

F

,

B̂( t + 1) = arg min
B̂



 


Y (2) - B̂ ( )D̂( t )⊙Ĉ ( t )⊙Â( t ) T 2

F

,

Ĉ ( t + 1) = arg min
Ĉ



 


Y (3) - Ĉ ( )D̂( t )⊙B̂( t )⊙Â( t ) T 2

F

,

D̂( t + 1) = arg min
D̂



 


Y (4) - D̂ ( )Ĉ ( t )⊙B̂( t )⊙Â( t ) T 2

F ,(18)
where Y (n ) denotes the mode-n unfolding of Y. Note the 
above least squares problems admit closed-form solutions, 
which are given by Â( t + 1) = Y (1)(( D̂( t - 1)⊙Ĉ ( t - 1)⊙B̂( t - 1) ) T ) †, 
B̂( t + 1) = Y (2)(( D̂( t )⊙Ĉ ( t )⊙Â( t ) ) T ) †, Ĉ ( t + 1) = Y (3)(( D̂( t )⊙B̂( t )⊙Â( t ) ) T ) †, 
and D̂( t + 1) = Y (3)((Ĉ ( t )⊙B̂( t )⊙Â( t ) ) T ) †, respectively. The ALS it‑
eration can proceed until the objective value of Eq. (17) is 
below a predefined threshold. If the knowledge of the num‑
ber of paths, L, is unavailable, we adopt a multi-dimensional 
minimum description length (MDL) criterion to estimate the 
rank of the tensor[24–25].

Without loss of generality, for an N-way tensor Y with 
rank-R corrupted by zero-mean circularly symmetric com‑
plex Gaussian (ZMCSCG) noise, we suppose that its CP de‑
composition is:
Y = ∑

r = 1

R

a (1)
r ∘ a (2)

r ∘ ⋯ ∘ a (N )
r . (19)

Let Mn be the number of rows of the n-th factor matrix of 
Y and the associated factor matrices are defined as 
{ A(n ) }N

n = 1 with A(n ) ∈ CMn × R. Let M͂ ≜ ∏
n = 1

N

Mn. Then for the n-

mode unfolding of Y, we compute the sample covariance ma‑
trix as：

R̂ (n )
yy = Mn

M͂
[Y (n ) ][Y (n ) ]

H ∈ CMn × Mn. (20)
Define λ (n )

j  as the j-th eigenvalue of the n-th sample covari‑
ance matrix R̂ (n )

yy , and we assume the Mn eigenvalues of R̂ (n )
yy  

are arranged in a descending order:
λ (n )1 > λ (n )2 > … > λ (n )

Mn  . (21)
The estimation of the matrix rank of Y (n ) can be given by 

the MDL criterion as
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R̂(n ) = arg min
ℓ ∈ { }0,…,Mn - 1

MDL(n ) (ℓ) , where
 
MDL(n ) (ℓ) = ℓ

2 (2Mn - ℓ) log ( M̄ (n ) ) -

M̄ (n )(Mn - ℓ) log

æ

è

ç

ç

ç

ç

ç

ç

ç
çç
ç
ç

ç

ç

ç

ç

ç ( )∏
j = ℓ + 1

Mn

λ (n )
j

1
Mn - ℓ

1
Mn - ℓ ∑

j = ℓ + 1

Mn

λ (n )
j

ö

ø

÷

÷

÷

÷

÷

÷

÷
÷÷
÷
÷

÷

÷

÷

÷

÷

, (22)

in which M̄ (n ) = ∏
i = 1,i ≠ n

N

Mi. Finally, the rank of the tensor can 
be estimated as R̂ = min { R̂(n ) }N

n = 1.
3.3 Estimation of Channel Parameters

We discuss how to estimate the parameters of the time-
varying mmWave channel based on the estimated factor ma‑
trices { Â,B̂,Ĉ,D̂ }. Note that the CP decomposition is unique 
up to scaling and permutation ambiguity under a mild condi‑
tion, as is detailed in the next subsection. More precisely, 
the relationship between the estimated and true factor matri‑
ces is established as follows:
Â = AΛ1Π + E1,
B̂ = BΛ2Π + E2,
Ĉ = CΛ3Π + E3,
D̂ = DΛ4Π + E4, (23)

where { Λ1, Λ2, Λ3, Λ4 } are unknown nonsingular diagonal 
matrices that satisfy Λ1Λ2Λ3Λ4 = I, Π is an unknown per‑
mutation matrix, and E1, E2, E3, and E4 denote the estima‑
tion errors associated with the four estimated factor matri‑
ces, respectively.

The permutation matrix Π can be ignored as it is common 
to all factor matrices. Note that the l-th column of A and C is 
determined by ϕ̂l and ν̂l, respectively. Hence the AoA and 
the Doppler shift can be estimated via a correlation-based 
method:

ϕ̂l = arg max
ϕl

|âH
l a͂R (ϕl )|‖â l‖2‖a͂R (ϕl )‖2 , (24)

ν̂l = arg max
νl

|ĉH
l g (νl )|‖ĉ l‖2‖g (νl )‖2 . (25)

The l-th column of B is characterized by both θ̂l and ν̂l. Af‑
ter the Doppler shift is estimated, we define G͂ ∈ CP × L with 
[ G͂ ]p,l = ej2πpTsym ν̂l, and B̆ ∈ CP × L with [ B̆ ]p,l = [ B̂ ]p,l / [ G͂ ]p,l. 

Defining ăT (θl ) ≜ FHaT (θl ) ∈ CP, we can estimate the AoD 
as:

θ̂l = arg max
θl

|b̆H
l ăT (θl )|

‖b̆ l‖2‖ăT (θl )‖2 , (26)
in which b̆ l is the l-th column of B̆. Also, we note that the l-th 
column of D is βl f (τl ). Hence the time delay τl can be esti‑
mated via

τ̂l = arg max
τl

|d̂H
l f (τl )|

‖d̂ l‖2‖f (τl )‖2 , (27)
where d̂ l denotes the l-th column of D̂.

Finally, we try to recover the complex path gain, given the 
estimated AoA, AoD, time delay and Doppler shift. We de‑
fine the reconstructed factor matrices as follows.
A͂ ≜ [ a͂R ( ϕ̂1 ),⋯,a͂R ( ϕ̂L ) ] ∈ CM × L,
B͂ ≜ [ a͂T ( θ̂1,ν̂1 ),⋯,a͂T ( θ̂L,ν̂L ) ] ∈ CP × L,
C͂ ≜ [ g ( ν̂1 ),⋯, g ( ν̂L ) ] ∈ CK × L,
D͂ ≜ [ f ( τ̂1 ),⋯, f ( τ̂L ) ] ∈ CQ × L. (28)
Note that the reconstructed factor matrices share the same 

permutation ambiguity Π, and D͂ does not include the com‑
plex path gains. With the reconstructed A͂,B͂,C͂, we can obtain 
an estimate of the true factor matrix D by resorting to the 
mode-4 unfolding of Y (4), i.e.
D̆ = arg min

D̆



 


Y (4) - D̆ ( )C͂⊙B͂⊙A͂

T 2

F . (29)
Define Ξβ = diag ( β1,⋯, βL ). Theoretically we have

Ξ̂β = arg min
Ξ̂β





D̆ - D͂Ξ̂β

2
F . (30)

Thus the complex path gains can be estimated via a least 
squares (LS) method

β̂l = [ D͂† D̆ ]l,l . (31)

3.4 Uniqueness Condition and Sample Complexity
Clearly, the uniqueness of the CP decomposition is essen‑

tial to the success of recovering channel parameters. In this 
subsection, we analyze the conditions that ensure the unique‑
ness of the CPD for our problem. The uniqueness conditions 
also shed light on the sample complexity (i. e. training over‑
head) required by the proposed algorithm.

A well-known condition for the uniqueness of CPD is 
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Kruskal’s condition. Specifically, let kX denote the k-rank of 
a matrix X, which is defined as the largest value of kX so that 
every subset of kX columns of the matrix X is linearly inde‑
pendent. We then have the following theorem concerning the 
uniqueness of CP decomposition for the N-th-order tensor, 
which is reported in Ref. [26].

Theorem 1: Let χ be an N-way tensor with rank-R and sup‑
pose that its CP decomposition is:

χ = ∑
r = 1

R

a (1)
r °a (2)

r °⋯°a (N )
r . (32)

Then a sufficient condition for the uniqueness is

∑
n = 1

N

kA(n ) ≥ 2R + (N - 1). (33)
Note that Kruskal’s condition cannot hold, when R = 1. 

However, in that case, the uniqueness has been proved by 
Harshman. Kruskal’s sufficient condition is also necessary 
for R = 2 and R = 3, but not for R > 3.

From the above theorem, we know that if
kA + kB + kC + kD ≥ 2L + 3, (34)

then the CP decomposition of Y is unique. We first examine 
the k-rank of D = [ f (τ1 ),⋯, f (τL ) ] Ξβ, where f (τl ) has a 
Vandermonde structure. Obviously, D is a columnwise-
scaled Vandermonde matrix, and its k-rank is thus given by 
kD = min { Q,L }.

Next, we examine the k-rank of A. Note that
A = W H [ aR (ϕ1 ),⋯,aR (ϕL ) ] ≜ W HAR , (35)

where AR ∈ CNr × L is a Vandermonde matrix under the ULA 
consideration. It was proved in Ref. [11] that for a randomly 
generated W, the k-rank of A is kA = min { M,L }.

We now study the k-rank of B. The factor matrix B is ex‑
pressed as:
B =  G*(FH [ aT (θ1 ),⋯,aT (θL ) ]) ≜ G*(FHAT ), (36)

where G ∈ CP × L with [G ]p,l = ej2πpTsym νl, and * denotes the Ha‑
damard product. Note G has a Vandermonde structure and 
its l-th column is characterized by the Doppler shift of the l-
th path. For a randomly generated F ∈ CNt × P with each of its 
elements uniformly chosen from a unit circle, we define 
bp,l ≜ [G ]p,l f H

p aT (θl ) as the ( p,l )-th entry of B, where fp de‑
notes the p-th column of F. It can be verified that E [ bp,l ] =
0,∀p, l and

E [ bH
p1,l1 bp2,l2 ] =

ì

í

î

ïïïï

ïïïï

0,              p1 ≠ p2,
ej2πTsym p1 (νl2 - νl1 )

N 2
t

aH
T (θl1 )aT (θl2 ), p1 = p2 . (37)

According to the asymptotic orthogonality for ULA[27], 
aH

T (θl1 )aT (θl2 )/Nt converges to zero as Nt → ∞ with θl1 ≠ θl2. Thus, we can see that the elements of B are uncorrelated 
with each other since different paths have distinct AoDs. As 
a result, the k-rank of B is given as kB = min { P,L }.

As for kC, it can be easily verified that kC = 1 when the ve‑
hicle is stationary. Moreover, C is a Vandermonte matrix for 
non-stationary vehicles, in which case we have kC =
min { K, L }.

Finally, based on the above analysis, the Kruskal’s condi‑
tion is equivalent to

min { M,L } + min { Q,L } + min { P,L } + min { K,L } ≥ 2L + 3.
(38)

For a small L, we can reasonably assume that the number 
of subcarriers is greater than L, say, Q ≥ L. Also, if we as‑
sume M, the dimension of the combining matrix WD,q ( t ), is 
greater than 2, that is M ≥ 2, we only need to ensure 
min { P, L } + min { K, L } ≥ L + 1. Such a condition can be 
easily satisfied by setting either K = 1,P ≥ L or P = 1,K ≥ L.

Note that the training overhead required by the proposed 
method is PKQ. From the above discussion, it is easy to 
know that the amount of training overhead is in the order of 
O ( L2 ). Due to the sparse scattering characteristics of 
mmWave channels, L is usually small. Hence the proposed 
method can achieve reliable channel estimates with a moder‑
ate amount of training overhead.
4 Vehicle Sensing Based on Channel Esti⁃

mates
In V2I systems, based on the estimated channel param‑

eters, multiple APs can collaborate to localize a target ve‑
hicle and estimate its related kinematic parameters such as 
the heading and speed of the vehicle. These estimated posi‑
tions and kinematic parameters can be used to assist the 
communication between the vehicle and APs, such as beam 
switching and beam tracking. On the other hand, these APs 
can construct a real-time traffic map based on the positions 
and kinematic parameters of different vehicles, which can be 
used to give driving suggestions to vehicles, such as traffic 
jams ahead, vehicle formation, follow-up, and lane change, 
so that the traffic efficiency is enhanced[28].

For simplicity, we consider a two-dimensional Cartesian 
coordinate system (CCS) as illustrated in Fig. 1, where the 
orientation of each AP’s antenna array is assumed to be par‑
allel with the y-axis. The locations of the n-th AP and the ve‑
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hicle are respectively denoted as
pnAp = [ xnAp,y nAp ]T ∈ R2,
pv = [ xv,yv ]T ∈ R2, (39)

where pnAP is known while pv is to be estimated. In addition, 
there is an unknown vehicle heading, namely the orientation 
of the vehicle’s antenna array, which is denoted by 
α ∈ [ 0, π

2 ), and the speed of the vehicle in this direction is 
denoted as v.

For each AP, like the n-th AP, we assume there exists a 
LOS path and Ln - 1 non-line-of sight (NLOS) paths. The l-
th ( l > 0) NLOS path is a result of a scatterer at an unknown 
location:
pn,ls = [ xn,ls , y n,ls ]T ∈ R2. (40)
Note that for different APs, different paths may corre‑

spond to the same scatterer. For the uplink scenario, from 
the geometric relationship delineated in Figs. 1(a) and 1(b), 
the time delay, AoD, and AoA of each path and the positions 
of the vehicle/AP can be expressed as

τn0 = ‖pnAp - pv‖2
c ,

τn
l = ‖pnAp - pn,ls ‖2 + ‖pv - pn,ls ‖2

c , l > 0,

ϕn0 = arctan ( xv - xnAp
yv - y nAp ) ,

ϕn
l = arctan ( xn,ls - xnAp

y n,ls - y nAp ) , l > 0,
θn0 = ϕn0 + α,
θn

l = arctan ( xv - xn,ls
yv - y n,ls ) + α, l > 0  , (41)

▲Figure 1. A schematic for Vehicle-to-Infrastructure (V2I) coordinate systems

(a) AoAs and AoDs of LoS components (b) AoAs and AoDs of NLoS components

(c) Radial angles of LoS components (d) Radial angles of NLoS components
AoA: angles of arrival     AoD: angles of departure      AP: access point     LoS: line-of-sight      NLoS: non-line-of sight
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where ϕn
l ∈ ( )- π

2 , π
2 , and θn

l ∈ ( )- π
2 , π

2 .
To portray the motion relationship between the target ve‑

hicle and APs, we define the radial angle γn
l ∈ [ 0, π

2 ] , l ≥ 0, 
as shown in Figs. 1(c) and 1(d). For the LoS path, the radial 
angle can be calculated as: 

γn0 =
ì

í

î

ïïïï

ï
ïï
ï

π
2 + ϕn0 + α, xv ≤ xnAp (ϕn0 ≤ 0) ;
π
2 - ϕn0 - α, xv > xnAp (ϕn0 > 0) . (42)

For the NLoS path, the radial angle can be calculated as

γn
l =

ì

í

î

ïïïï

ï
ïï
ï

π
2 + ϕn

l + α, xv ≤ xn,ls  (ϕn
l ≤ 0) ;

π
2 - ϕn

l - α, xv > xn,ls  (ϕn
l > 0) . (43)

Note that γn
l  ( l > 0) is actually the radial angle between 

the target vehicle and the scatterer sn
l , so that the radial ve‑

locity between the target vehicle and the scatterer sn
l  can be 

regarded as the radial velocity between the target vehicle 
and the n-th AP under the assumption that all scatterers are 
static or quasi-static.

According to the kinematic relation between the vehicle 
and the n-th AP, the radial velocity of the target vehicle con‑
cerning the n-th AP can be expressed as:

vn
l = ì

í
î

v cos γn
l , toward AP movement ;

-v cos γn
l , reverse AP movement, (44)

where l ≥ 0. Obviously, based on achieving super-resolution 
channel estimation, highly accurate target vehicle localiza‑
tion and motion state (including heading and velocity) can 
be perceived via channel parameters.
4.1 Case of Single AP

For the proposed V2I mmWave MIMO OFDM system, af‑
ter the channel estimation stage, we can reap the channel pa‑
rameters from the target vehicle to all APs so that the loca‑
tion and motion of the target vehicle can be perceived 
through the geometric relationship. We define 
{ θ̂n

l , ϕ̂n
l , β̂ n

l , τ̂n
l , ν̂n

l }Ln - 1
l = 0  as the estimated channel path param‑

eters from the vehicle to the n-th AP, where l = 0 means the 
LoS components of the n-th link. The vehicle’s position and 
heading can be consequently given as
p̂nv = pnAP + τ̂n0 c [ sinϕ̂n0,cosϕ̂n0 ]T,
α̂n = θ̂n0 - ϕ̂n0, (45)

and then the first-order reflection sn
l  can be reasonably ac‑

quired by the intersection of the straight lines that respec‑

tively start from the AP’s and vehicle’s location, i.e.
x̂n,ls = xnAP + ( y n,ls - y nAP )tanϕ̂n

l , l > 0,
ŷ n,ls = xnAP - x̂v + yv tan ( θ̂n

l - α̂ ) - y nAPtanϕ̂n
l

tan ( θ̂n
l - α̂ ) - tanϕ̂n

l

, l > 0. (46)
Next, the radial degree between the vehicle and the n-th 

anchor can be calculated as:

γ̂n0 =
ì

í

î

ïïïï

ï
ïï
ï

π
2 + ϕ̂n0 + α̂, x̂nv ≤ xnAP ;
π
2 - ϕ̂n0 - α̂, x̂nv > xnAP . (47)

and the estimated vehicle velocity at the n-th AP is:
v̂n = v̂n0

cos γ̂n0 , (48)
where v̂n0 = ν̂n0 c/fc, and ν̂n0 is the estimated Doppler shift from 
the LoS component. Moreover, it can be inferred the target 
vehicle moves toward the n-th AP if v̂n > 0 and vice versa.
4.2 Case of Multi-APs

For the case of multi-APs, we have the estimated time-

varying channel parameters as { θ̂n
l , ϕ̂n

l , β̂ n
l , τ̂n

l , ν̂n
l }Ln - 1,N

l = 0,n = 1. For 
a LoS path, the location of targets is determined only by the 
path delay and AoA with respect to the related AP, hence we 
develop the estimation of the vehicle’s location from the esti‑
mated path delays and AoAs of all LoS paths between the ve‑
hicle and APs. For simplicity, we ignore the subscript of the 
LoS path, and define the mapping as follows.

ηn ( pv ) ≜ é

ë

ê
êê
ê
ê
êarctan ( xv - xnAP

yv - y nAP ) ,  pnAP - pv 2
c

ù

û

ú
úú
ú
ú
ú

T

. (49)
For the n-th AP, n = 1,⋯,N, we have
η̂n =  ηn ( pv ) +  ωn, (50)

where η̂n = [ ϕ̂n,τ̂n ]T, and ωn is the measurement error. With‑
out loss of generality, we assume ω ≜ [ [ ω1 ]T,⋯, [ ωN ]T ] T is 
distributed with mean zero and covariance Σω. Define 
η ( pv ) ≜ [ [ η1 ( pv ) ]T,⋯, [ ηN ( pv ) ]T ] T ∈ R2N, η̂ ≜ [ [ η̂1 ]T, ⋯,
[ η̂N ]T ]T ∈ R2N, and the estimation of the target location from 
multi-APs can be formulized as the following nonlinear 
weighted least-square (WLS) problem, i.e.
p̂ = arg min

p
[ η̂ - η ( p ) ] T

R [ η̂ - η ( p ) ]
            s.t. p ∈ Dv , (51)
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where Dv denotes the location range of the target vehicle and 
R can be chosen as R = I or R =  Σω

[29].
Next, we develop the Gauss-Newton method to iteratively 

solve Problem (51), which approximates the mapping η ( p ) 
by the first-order Taylor-series expansion at a given point 
p(0) as:
η ( p ) ≈  η ( p(0) ) +  J ( p(0) ) ( p -  p(0) ), 

J ( p(0) ) = ∂η ( p ) 
∂p |p = p(0). (52)

The nonlinear WLS Problem (51) can be converted to
p̂ = arg min

p
 [ η̂ - η ( p(0) ) - J ( p(0) ) ( p - p(0) ) ] T

R ×
      [ η̂ - η ( p(0) ) - J ( p(0) ) ( p - p(0) ) ]
     s.t. p ∈ Dv  , (53)

and the estimate of pv at the ( t + 1)-th iteration can be ob‑
tained by
p̂( )t + 1 = p̂( )t + (JT ( p( t ) )RJ ( p( t ) ))-1

JT ( p( t ) )Δ ( p( t ) ), (54)
where Δ ( p( t ) ) = ( η̂ - η ( p( t ) )). The above iteration can pro‑
ceed until the convergence condition ‖Δ ( p( t ) )‖ < ε is met, 
where ε is a predefined stopping threshold. Moreover, we 
can project the finally iterated result to Dv and make a sig‑
nificative location estimation of the target vehicle.

Defining p̂v = [ x̂v,ŷv ]T as the estimate of the vehicle’s lo‑
cation by Eq. (53), we then discuss how to obtain the ve‑
hicle’s heading α and velocity v. Specifically, we first recon‑
struct the observation of AoD at all APs as:

ϕ͂n = arctan ( x̂v - xnAP
ŷv - y nAP ) , n = 1,⋯,N, (55)

with which we have a series of remodeled heading as
ᾶn = θ̂n - ϕ͂n, n = 1,⋯,N. (56)
Let ῆα ≜ [ ᾶ1,⋯,ᾶN ]T, and an LS estimator of α can be 

given as
α̂ = arg min

α
  ῆα - ηα

2
2

s.t. ηα = 1 ⋅ α
     α ∈ Dα , (57)

where Dα denotes the angle range of the vehicle’s heading. 
The LS solution can be easily obtained as α̂ = 1

N ∑
n = 1

N

ᾶn.
Furthermore, we have a similar way to remodel the obser‑

vation of radial angles at all APs as:

γ͂n =
ì

í

î

ïïïï

ï
ïï
ï

π
2 + ϕ͂n + α̂, x̂v ≤ xnAP ;
π
2 - ϕ͂n - α̂, x̂v > xnAP , (58)

with which we have v͂n = ν̂n ⋅ c
cos γ͂n ⋅ fc

 , where ν̂n is the esti‑
mated Doppler shift from the LoS component of the channel 
between the n-th AP and the vehicle. Let ῆv ≜ [ |v͂1|,⋯,|v͂N|] T, 
and an LS estimator of v can be given as

v̂ = arg min
v

 ῆv - ηv

2
2

s.t. ηv = 1 ⋅ v
        v ∈ Dv , (59)

where Dv denotes the velocity range of the vehicle. The LS 
solution can be easily obtained as v̂ = 1

N∑n = 1
N || v͂n .

5 Simulation Results
In this section, we carry out experiments to illustrate the 

performance of our proposed method. In simulations, the AP 
is located at pAP = [ 21,0 ]T. The vehicle is located at pv =
[ 43,8 ]T and moving with a heading α = π

12  and a radial ve‑
locity v = 40 km/h toward the AP. The number of paths 
L = 3 and we consider a distance-dependent path loss. For 
the LoS path (l = 0), β0 ∼ CN (0,10-0.1κ ), and κ = a +
10b log10(D) + ξ, in which D denotes the distance between 
the vehicle and the AP, and ξ ∼ N (0,σ2

ξ ). The values of 
a,b,σξ are set to be a = 61.4 dB, b = 2 dB and σξ = 5.8 dB 
as suggested by LoS real-world channel measurement[30]. For 
the NLoS path (l > 0), the complex path gain is 
βl ∼ CN (0,10-0.1( )κ + μ ), and μ is the Rician factor[31–32]. The 
carrier frequency is 28 GHz unless otherwise stated. There 
are Nt = 32 antennas at the vehicle (transmitter), Nr = 64 an‑
tennas and Mr = 6 RF chains at each AP. The total number 
of subcarriers is Q̄ = 100, out of which Q = 10 subcarriers 
are selected for training, and the sampling rate is set to fs =
100 MHz. The number of subframes for training is set to K =
3, and the number of symbols in one subframe is set to P =
10. The beamforming matrices F and W are randomly gener‑
ated with their entries uniformly chosen from a unit circle. 
The signal-to-noise ratio (SNR) is defined as:

SNR =  Y - N 2
F

 N 2
F , (60)
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where Y and N denote the received signal and the additive 
noise. The performance of our proposed method is evaluated 
by the mean square error (MSE), which is defined as

MSE (ς) = ∑
l = 1

L

| ςl - ς̂l |
2
, (61)

where ςl ∈ {θl,ϕl,τl,νl, βl} and the MSE is calculated sepa‑
rately to examine the estimation accuracy for each param‑
eter. We also leverage the Cramer-Rao bound (CRB) results 
for a baseline of the estimates of channel parameters. The 
CRB is a lower bound on the variance of any biased estima‑
tor[33]. It provides a benchmark for evaluating the perfor‑
mance of our proposed method.

The performance of our proposed method as a function of 
SNR is depicted in Fig. 2. It can be observed that the CRBs 
of all five parameters decrease exponentially against the in‑
creased SNR. In addition, the MSEs of our proposed method 
converge to their lower bound while the SNR is increasing, 
which validates the efficacy of the proposed method for chan‑
nel estimation. Specifically, the MSEs of AoA, AoD, Doppler 
shift and time delay are relatively close to its CRB, while the 
gap between the MSE and CRB of path gain is relatively 
wider, which may be subject to accumulated estimation er‑
rors.

In Fig. 3, we show the normalized mean square error 

(NMSE) result for our proposed method as a function of 
SNR, in which the NMSE is defined by:

NMSE = ∑q = 1
Q  Ηq - Ĥq

2
F∑q = 1

Q  Ηq

2
F

,
(62)

where Ηq denotes the frequency-domain channel matrix as‑

▲Figure 2. MSEs and CRBs associated with different parameters versus SNR

CRB: Cramer-Rao bound     MSE: mean square error     SNR: signal-to-noise ratio
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sociated with the q-th subcarrier, and Ĥq is its estimate. 
Thanks to accurate channel parameter estimation, the pro‑
posed method can deliver a relatively accurate channel esti‑
mate as long as the SNR is above 0 dB.

Based on the estimation of channel parameters, the loca‑
tion, heading and velocity of the vehicle can be recovered 
from the geometric relationship as well as the motion rela‑
tionship between the vehicle and each AP. To fully illustrate 
sensing performance, we compare the sensing performance 
of two cases namely single-AP and multi-AP for the V2I sys‑
tem. Specifically, we consider AP1 is located at p1AP =
[ 21,0 ]T and AP2 is located at p2AP = [ 82,0 ]T. The vehicle is 
located at pv = [ 58, 12 ]T and moving with a heading α = π

12  
and a radial velocity v = 50 km/h toward AP2. The sensing 
performance of the two cases is plotted in Figs. 4, 5 and 6, 
from which we can observe that the sensing performance of 
the multi-AP case outperforms that of the single-AP case. 
The performance improvement can be intuitively explained. 
Because the vehicle is closer to AP2, the channel link be‑
tween vehicle-AP2 is stronger than vehicle-AP1, which 
yields more accurate channel parameter estimation. In par‑
ticular, the wider performance gap in estimating the vehicle’
s location between the multi-AP case and the single-AP case 
is caused by the accumulation of errors, as the location esti‑
mation is based on both AoA and time delay estimates.
6 Conclusions

In this paper, a CP decomposition-based method is pro‑
posed for high-accuracy channel estimation as well as sens‑
ing in mmWave MIMO-OFDM V2I Systems. To characterize 
the Doppler shift due to the vehicle’s mobility, a time-
varying frequency-domain mmWave channel is derived, a 
novel frame structure is introduced and a CP decomposition-
based channel estimator is proposed. Utilizing the estimates 
of channel parameters in multi-APs, a nonlinear weighted 
least-square problem is proposed to accurately recover the 
location, heading and velocity of the vehicle. Simulation re‑
sults are carried out to illustrate the effectiveness of the pro‑
posed method in performing communication and sensing in 
mmWave MIMO-OFDM V2I Systems.
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ISAC obtains the prior information about node distribution, reducing the ND time. However, the prior information obtained through ISAC may 
be imperfect. Hence, an ND algorithm based on reinforcement learning is proposed. The learning automaton (LA) is applied to interact with 
the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms. Besides, an 
efficient ND algorithm in the neighbor maintenance phase is designed, which applies the Kalman filter to predict node movement. Simulation 
results show that the LA-based ND algorithm reduces the ND time by up to 32% compared with the Scan-Based Algorithm (SBA), which 
proves the efficiency of the proposed ND algorithms.
Keywords: unmanned aerial vehicle networks; neighbor discovery; integrated sensing and communication; reinforcement learning; Kalman filter

Citation (Format 1): WEI Z Q, ZHANG Y J, JI D N, et al. Sensing and communication integrated fast neighbor discovery for UAV networks [J]. 
ZTE Communications, 2024, 22(3): 69–82. DOI: 10.12142/ZTECOM.202403009
Citation (Format 2): Z. Q. Wei, Y. J. Zhang, D. N. Ji, et al., “Sensing and communication integrated fast neighbor discovery for UAV net‑
works,” ZTE Communications, vol. 22, no. 3, pp. 69–82, Sept. 2024. doi: 10.12142/ZTECOM.202403009.

1 Introduction

Recently, integrated sensing and communication 
(ISAC), which improves hardware and spectrum effi‑
ciency, has attracted wide attention in both academia 
and industry. For unmanned aerial vehicle (UAV) net‑

works, ISAC can save limited space and power, minimize the 
payload, and increase the endurance of UAVs. Therefore, 
ISAC-driven UAV networking becomes vital to achieve better 
performance of UAV networking, especially for neighbor dis‑
covery (ND). Obtaining the prior knowledge through ISAC can 
speed up neighbor discovery. The estimated number and direc‑
tions of neighbors can be obtained through ISAC to avoid in‑
valid transmission in advance. Based on the prior knowledge, 
the scan-based algorithm (SBA) is used for neighbor dis‑
cover[1–2]. In Ref. [3], LIU et al. used the sensing information 
obtained by a double-sided phased array radar to assist neigh‑

bor discovery and proposed a new algorithm that applies two 
beams to transmit and receive independently or simultane‑
ously. In Ref. [4], based on the accuracy of the prior knowl‑
edge and the response mechanism, WEI et al. proposed four 
radar-assisted ND algorithms, including Reply and Non-Stop 
(RnS), Non-Reply and Non-Stop (nRnS), Reply and Stop (RS), 
and Non-Reply and Stop (nRS). In Ref. [5], a 79-GHz 
millimeter-wave radar was used to detect the location and mo‑
bility of neighbors and the identity information of neighbors 
via 5.9-GHz braodcasting was obtained. The UAV node identi‑
fies its neighbors by combining the information obtained from 
the two frequency bands.

Besides ISAC-based ND algorithms, there are other meth‑
ods to acquire prior knowledge. In Ref. [6], KHAMLICHI et 
al. applied energy detectors to distinguish whether the receiv‑
ing node was in a collision state or an idle state. If the receiv‑
ing node is in the collision state, it will switch to the collision-
resolving listening mode and the transmitting node will switch 
to the collision-resolving re-transmitting mode until the receiv‑
ing node successfully receives the data packets transmitted by 
at least two transmitting nodes. GAO et al. proposed an anti-
collision ND protocol that avoids beacon collisions through 
carrier sensing[7]. The node can decide whether to send a bea‑

This work was supported in part by the Fundamental Research Funds for 
the Central Universities under Grant No. 2024ZCJH01, in part by the Na⁃
tional Natural Science Foundation of China (NSFC) under Grant No. 
62271081, and in part by the National Key Research and Development 
Program of China under Grant No. 2020YFA0711302.
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con according to the prior knowledge of the channel state ob‑
tained by carrier sensing, which can effectively avoid colli‑
sions. SUN et al. proposed an ND protocol based on pre-
handshake[8]. The pre-handshake is carried out by adding 
small sub-slots before the ordinary time slots, which allows 
nodes to learn the activities of their neighbors in advance to re‑
duce collisions. In Ref. [9], a dual-band system was applied, 
where one frequency band was used to obtain prior knowledge 
about neighbors, and the other frequency band was used for 
neighbor discovery. The paper also discussed how to maximize 
the efficiency of neighbor discovery in the presence of prior 
knowledge. Except for applying prior knowledge to improve 
the performance of algorithms, some researchers consider in‑
troducing reinforcement learning algorithms to find an optimal 
ND strategy by interacting with the environment[10–11]. Opti‑
mizing the classical ND algorithms by dynamically adjusting 
the parameters are also considered[12–13]. However, these algo‑
rithms are all direct ND algorithms. As the number of nodes 
increases, some researchers have focused on ND algorithms 
based on gossip, in which nodes can indirectly discover neigh‑
bors by exchanging neighbor lists with their neighbors[14].

The above studies still have several limitations: 1) When 
they apply prior knowledge to improve neighbor discovery, 
they ideally assume that the sense information is perfect. How‑
ever, ISAC may make the radar detection range smaller than 
the communication range and lead to the problem of incom‑
plete prior knowledge obtained by nodes; 2) only the initializa‑
tion phase of the neighbor discovery is studied in the above pa‑
pers. Some temporary events in the neighbor maintenance 
phase can easily destroy the node connection, such as node 
failure, energy exhaustion, and power increase. As neighbor 
discovery is a continuous process, the maintenance phase 
should be studied with the initialization phase together. In this 
paper, reinforcement learning is introduced to solve the prob‑
lem of incomplete prior knowledge. A Kalman filter is applied 
to predict the movement of nodes in the neighbor maintenance 
phase, which can speed up neighbor discovery in the mainte‑
nance phase. The main contributions of this paper are summa‑
rized as follows.

1) We introduce a reinforcement learning algorithm to ad‑
dress the incompleteness of prior information obtained by 
ISAC, which occurs in the ND problem. The problem is 
mapped as a multi-agent learning model, and an ND strategy 
based on learning automata (LA) is proposed. The algorithm 
estimates whether the neighbor nodes have been completely 
discovered according to the distribution of nodes and the par‑
tial information obtained by detection. We design a linear re‑
ward and punishment mechanism for LA. The simulation re‑
sults show that when the ratio of radar detection range to com‑
munication range is set to 0.6, the time efficiency of the algo‑
rithm based on LA can be increased by 32%.

2) Due to the high mobility of UAVs, the neighbor list 
needs to be continuously updated to maintain the constructed 

network topology. Unlike the existing ND algorithms that up‑
date the entire network, we separate the neighbor maintenance 
phase from the traditional initialization phase. In the neighbor 
maintenance phase, an efficient ND algorithm is designed, 
where the Kalman filter is introduced based on the prior 
knowledge obtained in the initialization phase. The switching 
mechanism between the initialization phase and the mainte‑
nance phase is also designed. When an error occurs in node 
prediction or the duration of the neighbor maintenance phase 
is greater than a threshold, the maintenance phase will be 
switched to the initialization phase to ensure the accuracy of 
the network topology. The simulation results prove that the 
networking efficiency with this algorithm is much higher than 
that of traditional neighbor discovery.

The rest of this paper is organized as follows. In Section 2, 
the system model and assumptions are described. In Section 
3, considering the gap between the radar detection range and 
communication range, we introduce the reinforcement learn‑
ing algorithm and design the learning strategy. The upper and 
lower bounds of time slots required to discover all neighbors 
are derived in the algorithm. Moreover, the impact of param‑
eter settings on the performance is simulated and analyzed in 
two-dimensional and three-dimensional UAV networks. In 
Section 4, the Kalman filter is introduced, which greatly im‑
proves the efficiency of neighbor discovery through predic‑
tions. In Section 5, the algorithms proposed in Sections 3 and 
4 are simulated and analyzed. Section 6 concludes this paper.
2 System Model and Assumptions

2.1 System Model
In UAV networks, neighbor discovery needs to be carried 

out periodically due to the mobility of nodes and its possible 
failure. Neighbor discovery can be divided into two proce‑
dures: the initialization and maintenance phases[15]. Previous 
works performed these two phases with the same 
scheme[6, 16–20]. Considering the mobility of nodes and the 
highly dynamic topology of UAV networks, we use different 
strategies for the two phases and design their switching mecha‑
nism. Fig. 1 shows the transformation of the two phases.

Initialization phase is a traditional stage for neighbor dis‑

▲Figure 1. Two-stage conversion of neighbor discovery

Initialization Maintenance

Get estimated neighbor information

Most neighbors leave the neighborhood
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covery. In this stage, we introduce LA for the neighbor discov‑
ery. Nodes are regarded as agents with learning ability, and 
automatic learning machines are applied to change policies to 
speed up the discovery process. More detailed information is 
introduced in Section 3.

Maintenance phase refers to the stage in which the topology 
needs to be updated due to possible failures, which adapts to 
the highly dynamic topology due to the mobility of UAVs. At 
this stage, nodes need a more efficient scheme to cope with 
the rapid changes in topology with limited energy. In Section 
4, a neighbor maintenance method based on the Kalman filter 
is proposed to accelerate the construction of network topology 
by using the speed and location of the neighbors.
2.2 Neighbor Discovery Assumptions

Undirected graphs G = (V, E ) are here used to describe the 
neighbors of nodes in the network, where V = (V1, V2,⋅ ⋅ ⋅, VN ) 
is the set of nodes distributed uniformly and randomly and E 
is the set of link edges. A link edge (i, j ) ∈ E represents that 
two nodes (i, j ) are one-hop neighbors of each other. Each 
node is equipped with a directional antenna. For a two-
dimensional model, the neighborhood of a node is a circle with 
radius Rs. The antenna width is α and the neighborhood can 
be divided into k = 2π/α non-overlapping beams. For a three-
dimensional model, its neighborhood is a sphere with a radius 
Rs. The vertical and horizontal widths of a beam of the antenna 
are both α, and the neighborhood can be divided into k =
2π2 /α2 non-overlapping beams. Moreover, the following defini‑
tions and assumptions are made.

1) Identification: All nodes are distinguished by unique 
identification (ID), which can be a media access control 
(MAC) address.

2) Resource: All nodes will transmit messages on the same 
frequency band with the same power.

3) Time slot division: The network adopts the synchronous 
time slot division model[21], which divides time into time slots 
of the same length. The algorithm proposed in this paper is 
based on a two-way handshake mechanism. Therefore, each 
time slot is divided into two mini-slots, as shown in Fig. 2. In 
the second mini-slot, after receiving the Hello packet, the re‑
ceiving node replies with an acknowledgment packet (ACKP) 
with probability 1.

4) Half-duplex: The nodes work in the half-duplex mode[22]. 
A node will be in a transmitting or receiving state at any time 
slot. In this paper, a node has three modes: transmit (T), re‑
ceive (R), and idle (I) [23]. Unlike being in the active states (T/
R), nodes in the idle state save power consumption[24].

5) Successful communication: Nodes A and B are neighbors 
to each other only when they are within the one-hop communi‑
cation range of each other. As shown in Fig. 3(a), successful 
communication between a pair of nodes requires that antennas 
are in a complementary state (one node transmits and the 
other receives) and point to each other at the same time. It is 

supposed that the transmitting direction of node A is θ' and 
the receiving direction of node B is θ''. For the directional 
transmission and directional reception mode, the following 
conditions must be met for successful communication: a) The 
antenna patterns of the two nodes are complementary; b) the 
direction meets θ' = ( θ'' + π)mod2π; c) no collision occurs 
during the interaction.

6) Collision: When a node receives two or more Hello pack‑
ets, a data packet conflict has occurred. As shown in Fig. 3(b), 

▲Figure 2. Time slot division

▲Figure 3. Successful communication and data packet collision
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a collision will occur when two nodes send signals to one node 
at the same time.

7) ISAC: Each node is equipped with a set of transceivers to 
send and receive ISAC signals. A node transmits the ISAC sig‑
nal that has detection capabilities and carries the Hello 
packet. The receiver can process the echo signals and the com‑
munication data packets.

8) Neighbor information: Each node maintains an antenna 
beam number list (ABNL) and a neighbor information list 
(NIL). Maintained by node i, ∀i ∈ N, the ABNL is denoted 
as i, ∀i ∈ N, ξ k

i ∈ { 0, 1 }, where ξ k
i  denotes the existence of 

node i in the k-th beam direction according to the result of 
radar detection. If the radar detects that there are neighbors 
in the k-th beam, ξ k

i  is marked as 1. Otherwise, it is marked 
as 0. Maintained by node j, ∀j ∈ N, the NIL is expressed as 
Ij = { I1, I2,⋯, IN }, which maintains the information of one-
hop neighbors.

With an ISAC signal, the radar detection range is smaller 
than the communication range; η = Rr /Rc is the ratio of radar 
detection range to communication range. As shown in Fig. 4, 
nodes can only detect part of neighborhood information[25].

The ND algorithm uses LA to solve this problem. The ND 
process is modeled as autonomous learning. Nodes are re‑
garded as agents, and the neighborhood is regarded as the en‑
vironment to be learned. Based on the prior knowledge ob‑
tained by each time slot, the node optimizes the behavior of se‑
lecting the beam in the ND algorithm[25].
3 Neighbor Discovery Algorithm Based on 

Learning Automata

3.1 Learning Automata Node
In a non-stationary environment, the reward distribution is 

related to time. So the learning goal of LA is to adjust behavior 
based on each time slot[26]. This paper is based on a non-
stationary environment and applies a finite state automaton 
(FSA) to model neighbor discovery.

In each time slot, LA selects an action and receives an en‑
hanced signal βi from the environment. βi describes whether 
the selected action is beneficial or unfavorable. LA observes 
the input signal and updates the action probability distribu‑
tion vector P i to enable a higher probability of successful 
neighbor discovery in the next time slot. Moreover, in the LA 
model, there are the following definitions.

Antenna mode Mi = { T, R }: In each time slot, LA i indepen‑
dently selects the transmission mode (T) with probability pt and selects the reception mode (R) with probability pl = 1 - pt.Action space Ai = { a1, a2,⋅ ⋅ ⋅, ak }: Action ak = 1 means 
that LA i transmits or receives in beam k.

Action probability distribution vector P i = { p1
i , p2

i ,⋅ ⋅ ⋅, pk
i }: 

pm
i  is the probability that LA i selects beam m. In each time 

slot, LA i selects a beam according to P i.Reinforcement signal βi ( t ): The reinforcement signal 
βi ( t ) ∈ { 0,1 } is obtained by LA i in time slot t.

Probability update: The action probability distribution vec‑
tor is updated to P i ( t + 1) according to βi ( t ) in time slot t.
3.2 Probability Update Strategy

According to the range of radar detection and communica‑
tion, neighbors are divided into two categories, including the 
nodes both in the radar detection range and communication 
range, and the nodes in the communication range and outside 
the radar detection range. Two lists are defined to describe 
these two types of neighbors: the radar neighbor list (RNL) and 
communication neighbor list (CNL). The RNL of node i is a 
matrix R i

N × K with dimension N × K, which records the neigh‑
bors in the RNL of node i. For example, if node f exists in the 
RNL of node i, the f-th row of matrix R i

N × K, namely vector 
R i

f × K, represents the discovery of node f in the beams of node 
i. When node f is in beam g with g ∈ {1, 2,⋯, K }, R i

f × K is
R f × K = é

ë
êêêê ù

û
úúúú0 0 1

g
… 0

1 × K . (1)
CNL of node i is denoted by Ci

N × K and R i
N × K ∈ Ci

N × K. The 
vector R i1 × K = [ r11 ⋅ ⋅ ⋅ r1K ] is the number of neighbors de‑
tected by node i in the second mini-slot. The radar can detect 
the number and the position of nodes in the current beam[4].

LA i optimizes the action selection by updating the action 
probability distribution vector P i [27]. The update strategy is 
as follows.

Environmental interaction: At time slot t, LA i selects an ac‑
tion am, calculates the environmental feedback information, 
gives an enhanced signal βi ( t ), and updates it to P i ( t + 1) ac‑
cording to Eqs. (3) or (4). When the radar detects the same 
beam multiple times, the inaccurate detection in the previous ▲Figure 4. Communication and radar detection range
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RS

Radar range

j
i
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time slot can be corrected by updating matrix R i1 × K.
Reward and punishment signal β k

i : When LA i selects beam 
k and the transmission mode, the ISAC signal is transmitted in 
the first mini-slot. In the second mini-slot, LA i updates 
Ci

N × K and R i
N × K according to radar detection and the communi‑

cation result. If there are potential neighbors in beam k, assign 
β k

i = 0. For example, if a neighbor is in beam k in RNL and 
the ACK packet is not received in the second mini-slot, there 
is a potential neighbor in beam k and should be rewarded. If 
there are no potential neighbors in beam k, assign β k

i = 1.
In UAV networks, the number of neighbors in each beam is 

mostly 0 and 1[4]. In a beam, when a node appears in the radar 
detection range, the probability of other nodes appearing in 
the communication range outside the radar detection range is 
small. P ipte is the probability that there are still neighbors for 
node i in beam m when all the nodes in the radar detection 
range are discovered, with expression as follows.
P ipte = P ipte( )N R1 + P ipte( )N R2 + ⋅ ⋅ ⋅ =

PB2 + ⋅ ⋅ ⋅ +PBm

PB1 + PB2 + ⋅ ⋅ ⋅ +PBm

+ PB3 + ⋅ ⋅ ⋅PBm

PB2 + ⋅ ⋅ ⋅ +PBm

+ ⋅ ⋅ ⋅, (2)
where P i

pte (N R1 ) represents the probability that the sum of the m-
th column of Ci

N × K - R i
N × K is greater than 1 when r1m = 1, and 

Pipte (N R2 ) represents the probability that the sum of the m-th col‑
umn of Ci

N × K - Ri
N × K is greater than 1 when r1m = 2.

According to the reinforcement signal, the update of the ac‑

tion probability distribution vector is divided into the follow‑
ing two cases.

When β k
i = 0,

P i
k ( t + 1) =

ì
í
î

ïï

ïï

P i
k( )t + ϕ ( )⋅ ( )1 - P i

k( )t , ai( )t = ai

( )1 - ϕ ( )⋅ P i
k( )t ,ai( )t ≠ ai

  
， (3)

where ϕ (⋅) is a function of the number of potential neighbors.

ϕ (⋅) = ì
í
î

γ1ni( )t ,  ni = 1
γ2ni( )t ,  ni > 1， (4)

where γ1 represents the reward coefficient of a single potential 
neighbor, γ2 represents the reward coefficient of multiple po‑
tential neighbors, and ni ( t ) represents the number of potential 
neighbors.

When β k
i = 1,

P i
k ( t + 1) =

ì
í
î

ïïïï

ïïïï

( )1 - μ P i
k( )t , ai( )t = ai

μ
K - 1 + ( )1 - μ P i

k( )t , ai( )t ≠ ai， (5)
where μ is the penalty coefficient.
3.3 ND Process

The ND algorithm based on LA is depicted as follows, and 
its flow chart is shown in Fig. 5.

▲Figure 5. Flow chart of the ND algorithm
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When neighbor discovery starts, LA i initializes its action 
probability distribution vector P i ( t = 0), P i

k = 1/K, ∀i ∈ N, 
and assigns matrices R i1 × K,  R i

N × K, and C i
N × K to zero.

Repeat the following steps for each time slot.
LA i randomly selects ak with probability υ or selects ak ac‑

cording to the action probability distribution vector P i with 
probability 1 - υ.

In the second mini-slot, when Mi = T, update R i
N × K accord‑

ing to radar detection, update Ci
N × K according to the communi‑

cation result, and update P i according to the reinforcement sig‑
nal. When Mi = R, update Ci

N × K according to the communica‑
tion result in the first mini-slot. If the Hello packet is re‑
ceived, it will reply with an ACK packet, otherwise it will be 
in the idle state.
3.4 Time Convergence Upper and Lower Bound Analysis

In the learning-based ND scheme, the action probability 
distribution vector changes with time. This section gives the 
probability update strategy when η = 1. When the current 
beam k does not receive an echo, let μ = 1 in Eq. (5), other‑
wise no update is made.
3.4.1 Discovery Probability Analysis

The ND process can be described as a Bernoulli experiment 
in all beams[12].

It takes J frames for a node u to find its neighbor v with 
probability Pv

J. K is the number of beams. In the two-
dimensional model, the node density is σ = N/πR2

s . In the 
three-dimensional model, the node density is σ = 3N/4πR3

s . The average number of beams is m = N/K. The probability 
that any node is transmitting in any time slot is pt.After time slot t, the number of neighbors discovered by 
node u is χ ( t ); (i + 1) th means the direction in which the 
beam is likely to point from χ ( t ) = i to χ ( t ) = i + 1. Suppose 
there are a total of mj neighbors of node u in beam j. X = pt /K 
represents the probability that mj (including v) neighbors in 
beam j each send to node u. Xj = pr /K represents the probabil‑
ity of node u receiving in beam j.

Lemma 1: The probability of finding a specific neighbor 
when there is a collision is

Pro = XXj(1 - X )mj - 1. (6)
Based on Lemma 1, in the two-way handshake, if node u 

discovers its neighbor v in time slot t, the antenna beams of u 
and v need to point to each other with probability 1/K 2. The 
antenna patterns of (u, v ) are complementary to each other, 
which is (T, R ) or ( R, T ) with probability 2 × pt × (1 - pt ). In 
addition, the other N - 1 neighbors must not interfere with the 
ND process. When other neighbors select the transmitting 
mode, the probability of aligning with the receiving node is 
1/K 2 and the non-interference probability is (1 - 1/K 2 ). When 
other neighbors select the receiving mode, it does not send an 

ACK packet in the second mini-slot[25]. Therefore, the prob‑
ability of finding any neighbor is

Pu - vsuc = 2 1
K 2 pt( )1 - pt ⋅ ( )( )1 - 1

K 2 pt + ( )1 - 1
K 2 pt ( )1 - pt

N - 1

,
(7)

where K = 1 means the antenna is omni-directional. Pu - vsuc ≈
2pt (1 - pt )2N - 1 and the best transmission probability is popt

t =
1/ (2N )[25]. When the beam width is small, the optimal value 
can be set as popt

t = 0.5 through simulation.
3.4.2 Analysis of Upper and Lower Bounds of Time Slot Mean

When K is a constant, the probability of node u finding any 
neighbor v in a time slot is a function of N and pt, which can 
be expressed as F u - v

p (N, pt ). In ISAC, the central node can 
update the antenna beam list with the information obtained by 
radar detection. Because of that, K also affects the probability 
of success and function F u - v

p (N, pt ) is rewritten as 
F u - v

p (N, pt, K ). Pu - vsud  in Eall
u (N -  1)[28] is changing. The expec‑

tation number of slots required for node u to find a new neigh‑
bor E1[28] is also changing. As the neighbor discovery pro‑
gresses, K gradually becomes smaller and the discovery prob‑
ability becomes larger.

Eall
i (N - 1) = ∑

i = 1

N - 1 1
( )N - i Pu - vsud , (8)

E1 = 1
( )N - 1 Pu - vsud . (9)

The range of the beams that can be selected for any node i 
is x ∈ [ K - N E0 , K ]. The average number of empty beams is 
N E0 = N ( K, N, 0 ), where N is the number of neighbors and K 
is the number of beams.

The second type of Stirling number S2 (n, m ) represents the 
number of schemes in which n different elements are divided 
into m sets. According to the principle of tolerance and exclu‑
sion, we can get

S2(n, m) = 1
m! ∑

k = 0

m

( - 1) 2( )m
k (m - k) n

. (10)
The second type of Stirling recurrence formula is

S2( )n, m = m ⋅ S2( )n - 1, m + S2( )n - 1, m - 1 ,
1 ≤ m ≤ n - 1 . (11)

The boundary conditions are
ì
í
î

ïï
ïï

S2( )n, n = 1,  n ≥ 0
S2( )n, 0 = 0,  n ≥ 1. (12)
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We bring S2 (n, n ) = 1 into Eq. (11) to get
∑
k = 0

m

( - 1) 2( )m
k (m - k) n = m!. (13)

When N ≤ K, N E0  is expressed as
N ( )K, N, 0 = ∑

h = 0

K - 1
h × Ch

K( )K - h ! × S2( )N, K - h /K N

N ≥ K , (14)
where Ch

K represents the selection of h ∈ [ K - N, K - 1] from 
K beams as empty beams, the fraction means putting the re‑
maining N neighbors into K - h beams and ensuring that no 
beam is empty, and K N means the number of schemes in 
which N neighbors are put into K beams.

When N > K, the range of the empty beam is [1, K - 1] and 
N E0  is

N (K, N, 0) = ∑
h = K - N

K - 1
h × ( )K

h
EK - h(N ) /K N, N < K, (15)

where

Em ( j ) =
ì

í

î

ïïïï

ïïïï

mj - ∑
l = 1

m - 1( )m
l

Em - l( j ) ,  j ≥ m

0,  j < m . (16)
According to the algorithm, once the node finds that the 

beam is empty, it does not send Hello messages to the 
beam afterwards. Therefore, K in Eq. (7) is changing. At 
the beginning of neighbor discovery, when the central node 
randomly selects in each slot, the probability of finding an 
empty beam is the largest, which is Pdis, 0 = N E0 /K. When an 
empty beam is found, the probability of finding a new 
empty beam is Pdis, 1 = (N E0 - 1) / ( K - 1). By analogy, the 
probability of finding the last empty beam is Pdis, N E0

=
1/ ( K - N E0 + 1).

We construct function f ( t, Pdis ) = (1 - Pdis )t - 1 Pdis to repre‑
sent the probability of beam quality change in t time slots, 
where Pdis represents the probability of selecting an empty 
beam in the current time slot. When the beam is fixed at x =
K - N E0 , the velocity reaches its peak. When x = K, the time is 
the longest. As shown in Fig. 6, we can give more precise up‑
per and lower bounds according to the characteristics of the 
discovery process.

It can be seen intuitively from Eq. (17) that Eall
i (N ) and 

Pu - vsud  are inversely proportional, so the lower bound of Eall
i (N ) 

is the upper bound of Pu - vsud . The average value of the empty 
beam is rounded to Nceil = é ùN E0 . Then in this time slot, time 
T dis

x  for each beam x is set to be the same and the average time 
Eall

i (N ) is obtained. Psud is revised as

Pu - vupper = 1
N E0 + 1 ∑

x = K - N E0

K 1
2x2

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç

ç

ç
ö

ø

÷

÷

÷

÷
÷
÷÷
÷

÷

÷

÷

÷( )1 - 1
x2 × 1

2 +

( )1 - 1
2x2 × 1

2

N - 1

. (17)
The mathematical upper bound of the neighbor discover 

time Eall
i (N ) is the lower bound of Pu - vsud . The number of pos‑

sible empty beams in the entire ND process of a node is N E0 . 
When K in Pu - vsud  is unchanged, the time is the longest, which 
is the upper bound of the time. In this section, to get an accu‑
rate upper bound, in any time slot, set time T dis

x  of these (N E0 -
2) beams appearing to be the same. It is equivalent to dividing 
the time of the larger discovery probability to the smaller dis‑
covery probability, so as to obtain the upper bound of the time 
of neighbor discovery. Psud can be expressed as

Pu - vlower = 1
N E0 - 2 ∑

x = K - N E0 + 1

K 1
2x2

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç

ç

ç
ö

ø

÷

÷

÷

÷
÷
÷÷
÷

÷

÷

÷

÷( )1 - 1
x2 × 1

2 +

( )1 - 1
2x2 × 1

2

N - 1

. (18)

4 Neighbor Maintenance Method Based on 
Kalman Filter

4.1 Flight Model of UAV
The initial speed and direction of a UAV are initialized 

▲Figure 6. Flow chart of neighbor discovery based on Kalman filter

Start

The initial stage of neighbor discovery (algorithms based on learning in Section 4)

Record position and speed

Prediction errorPredict its own position

Predict the location of neighbors Update neighbor topology
Maintenance phase of neighbor discovery

Prediction stage PE > θThrNo

Yes
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with a random pattern[29]. In a two-dimensional scene, the 
physical movement of the UAV is represented as vector Xk =
[ x Vx y Vy ]. In a three-dimensional scene, it can be rep‑
resented as Xk = [ x Vx y Vy z Vz ]. Fig. 7 shows the 
movement of two UAVs. The two-dimensional scene is a flat 
circle, and the three-dimensional scene is a cross-cut circle. 
Both of them have a radius of Rs.The predefined time interval is T th (PTI) [30], which repre‑
sents the time when B leaves the one-hop communication 
range of A.

T th = 2Rs

E [ ]V' , (19)
where E [ V'] represents the average value of relative speed.

In Fig. 7, V1 and V2 obey the uniform distribution on 
[ L1, L2 ] and θ1 and θ2 obey the uniform distribution on [ 0, π ]. 
They satisfy V' = V1cos θ1 + V2cos θ2. The expression of the 
probability density function of V1 is

f (V1 ) =
ì

í

î

ïïïï

ïïïï

1
( )L2 - L1

L1 ≤ V1 ≤ L2

0 others . (20)
The function f (D ) is the probability density of D = cos θ1, and its expression is

f (D ) =
ì

í

î

ïïïï

ïïïï

2
π 1 - D2

0 ≤ D ≤ 1
0 others . (21)

V1 and D are distributed independently, so the joint prob‑
ability density function is the product of the two, denoted as

f (V1, D ) =
ì

í

î

ïïïï

ïïïï

2
π( L2 - L1 ) 1 - D2

0 ≤ D ≤ 1, L1 < V1 < L2

0 others . (22)
Given that E [ V'] = 2E [ V ], V1 and θ1 are taken as ex‑

amples to find E [ V ], and the process is

E [ ]V = ∫
L1

L2 ∫
0

1
V1 D f ( )V1, D dV1dD =

     ∫
L1

L2 ∫
0

1
V1 D 2

π ( )L2 - L1 1 - D2
dV1dD = ( )L2 + L1π . (23)

We put the result of Eq. (23) into Eq. (19) to get
T th = πRs

( )L2 + L1
 . (24)

4.2 Kalman Filter Model
The Kalman filter estimates the value of variables based on 

observations, noise and errors, which is more accurate than 
the estimation based on observations[29].

We assume that each UAV saves N + 1 quadruples 
ID V P Tk , where V and P represent the speed and po‑

sition of the UAV respectively, and Tk is the timestamp. The 
state is represented as Xk = [VTk

PTk
].

Xk + 1 = Ak Xk + wk , (25)
Zk = Hk Xk + vk . (26)

In Eq. (25), Xk is the real state at time k, Xk + 1 is the predicted 
state, and Ak is the 4×4 state transition matrix. That is 
Xk →Ak

Xk + 1, where Δt can be set according to actual condi‑
tions. The process noise wk obeys Gaussian distribution of 
N (0, Q ). In Eq. (26), Zk represents the estimated position vec‑
tor, Hk is the observation matrix, and observation noise vk obeys the Gaussian distribution of N (0, R ).

Covariance Q and R can be obtained through empirical 
analysis, and the settings in this section are as

Q = 0.01 × E4 × 4, (27)

R = 10 × E2 × 2, (28)

Ak =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú1 Δt 0 0
0 1 0 0
0 0 1 Δt
0 0 0 1  , (29)

Hk = é
ë
êêêê ù

û
úúúú1 0 0 0

0 0 1 0  . (30)

▲Figure 7. Relative movement of two nodes

B

A
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θ1

θ2

V2
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At the prediction stage[29], the state value X'k^  at the next mo‑
ment is estimated according to

X'k^ = Ak - 1 Xk - 1
^ . (31)

1) Prediction and estimation
The covariance matrix P'k is predicted and estimated ac‑

cording to
P'k = AkPk - 1 Ak

T + Qk - 1. (32)
2) Stage update[29]
The optimal Kalman gain is calculated by
Kk = P'k H T

k(HkP'k H T
k + R)-1 . (33)

The estimated state X'k^  is updated by
Xk

^ = X'k^ + Kk (Zk - Hk X'k^ ). (34)
The estimated covariance matrix Pk is updated by
Pk = ( I - KkHk )P'k . (35)
Xk

^  is then used to predict the next moment, so that the pre‑
diction is more accurate[30].

3) Error forecast
In order to measure the effect of Kalman filtering, position 

error (PE) is
PE = é

ë
ù
û( )y'i - yi

2 + ( )x'i - xi

2  , (36)
where ( xi, yi ) is the true value and ( x'i , y'i ) is the predicted 
value.

The right-angled side Rl conforms to the uniform distribu‑
tion Rl ∼ U [ 0, Rscos (α/2) ], and the mathematical expecta‑
tion is

ERb
= Rscos (α/2) /2 , (37)

where the value of the bottom Rb is the error threshold θThr =
2ERb

× tan (α/2).
4.3 Switching Mechanism Between Initialization and 

Maintenance Phases
In the maintenance phase, after the node gets a highly accu‑

rate topology, a stop mechanism is joined[4]. The difference be‑
tween the maintenance and stop mechanisms[4] is that the 
beam selection probability changes with the number of undis‑
covered neighbors.

The size of the Hello packet can be changed according to 
the needs of the protocol. For example, node ID (4 B), node lo‑

cation (usually two integers, 8 B), speed (1 B) and direction (1 
B) can be added and deleted as needed[30]. In the initialization 
phase, the Hello packet contains ID, speed, and location infor‑
mation. In the maintenance phase, to reduce the data over‑
head, neighbor information can be obtained through predic‑
tion, and the Hello packet only contains the ID.

Next, the outgoing and incoming of UAVs are explored dur‑
ing the maintenance period of neighbor discovery[31].

UAV i calculates the distance Ri - j from neighbor j. When 
Ri - j > Rs , the UAV determines that the neighbor has left and 
no longer sends Hello packets, which can reduce bandwidth 
consumption[31].

In each time slot, UAV predicts its own position. When 
PE > θThr, it will switch to the initial stage of neighbor discov‑
ery. When the neighbor maintenance phase continues to be 
greater than the predefined time interval (PTI), even if PE <
θThr, it will also switch to the initial phase. In addition, to pre‑
vent the emergence of extreme situations, a random scan fac‑
tor Parbit is added to optimize the algorithm. All directions are 
arbitrarily selected with a small probability, which trades dis‑
covery time for accuracy. The parameters θThr, PTI and Parbit all have an impact on the protocol performance. If the random 
scan factor Parbit is too small, the neighbors that accidentally 
enter will not be discovered. If Parbit is too large, the discovery 
time of the neighbor maintenance phase is prolonged. These 
parameters need to be set according to the actual scene[30]. 
The distance prediction error threshold θThr and the time inter‑
val threshold T th will have an impact on the performance of the 
two-phase handover. First of all, if θThr is too large, the pre‑
dicted topology in the maintenance phase is not accurate 
enough, which prolongs the discovery time of the maintenance 
phase. If θThr is too small, it will enter the initial stage too fre‑
quently, which will increase data overhead. Secondly, if θThr is 
too large, the UAV may still not enter the initialization phase, 
but the actual topology has changed, which will also increase 
the average discovery time. If T th is too small, it will frequently 
enter the initial phase and increase data overhead.
5 Simulation Results and Analysis

5.1 Neighbor Discovery Algorithm Based on Learning 
Automata

Discovery time Eall
i ( t ) and speed V alli ( t ) are used as mea‑

surement standards. Some studies use neighbor convergence 
of 70%[11] as indicators to measure the algorithm perfor‑
mance. However, the algorithm based on purely directional 
Completely Random Algorithms (CRA) has a long tail prob‑
lem[11]. In this section, to fully see the effect of the algorithm, 
100% convergence of the nodes in the network is used as 
the criterion.

Each parameter influences the performance of the algo‑
rithm. Function Eall

i ( t ) = f (N, K, η, ϖ, ν ) represents the dis‑
covery time of the algorithm based on the LA, where N is the 
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network size, K is the number of beams, η is the radar commu‑
nication ratio, and ϖ = { γ1, γ2, μ } and ν are the reward and 
punishment factors. In order to eliminate the influence of ν, 
we set ν = 0.01. Next, the controlled variable methods are 
used to perform multiple simulations and the average value is 
taken. In order to better analyze the influence of the param‑
eters, Table 1 shows the parameter values obtained through 
multiple simulation observations.

Fig. 8 illustrates the relationship between the radar commu‑
nication ratio η and the convergence time Eall

i ( t ). When K = 
36, for the same topology size N, the larger the value of η , the 
smaller the time. The reason is that the larger η is, the more 
accurate the information obtained by the node in each time 
slot is. The action probability distribution obtained by itera‑
tion A can maximize the success rate of neighbor discovery in 
each slot. For N = 30, compared with classic CRA, when η =
{ η1, η2, η3, η5 }, the efficiency increases by 13.5%, 30.9%, 
57.9%, and 65.2%, respectively.

Fig. 9 shows the effect of the reward and punishment factor 
ϖ on Eall

i ( t ) and the velocity when N and K = 24 are fixed. 
Given γ1, γ2, μ ∈ [ 0, 1 ], the simulation parameters cannot be 
enumerated due to the complex and diverse combinations of 
parameters. When μ/γ1 = 2, let the set ϖ2 =
{ ϖ 62 ϖ 52 ϖ 42 ϖ 32 }, γ1 = 0.1,  μ = 0.2,  γ2 = 0.6 in ϖ 62, etc. 
Comparing the curves longitudinally, it can be seen that the 
optimal values of ϖopt are different in different scenarios. The 
simulation results also show that the algorithm can maintain a 
better performance effect than the classic ND algorithm in ac‑
tual scenarios.

Fig. 10 shows the influence of the beam change on time 
Eall

i ( t ) when N = 10. For the ISAC signal that shares the wave‑
form, its power is both the communication power and the radar 
power. Under normal circumstances, the radar signal has two 
path losses, while the communication has only one path loss. 
Without tuning parameters, the detection range of radar is gen‑
erally about half of that of communication[32]. It is more practi‑
cal to set η to 0.5 and 0.6. Set ϖopt = ϖ 42. Next, the first three 
sets of data in the histogram are analyzed. When K = 36, the 
data are ( 8 166, 6 099, 5 558 ). When K = 10, the data are 
( 692.4, 591.2, 560.4 ). It can be calculated that compared 
with CRA, the narrower the beam, the more obvious the effi‑
ciency improvement. When the number of neighbors is fixed, 
the narrow beam means that probability Pipten is small, and the 
probability of learning correct is high.

Convergence (discovery) rate V all
i ( t ) is quantitatively ana‑

lyzed from a computational perspective here. When the num‑
ber of beams is K = 36 and the number of neighbors is 
N = 25, a different η is set, and the reward and punishment 
factor is set to ϖopt = ϖ 62. Then the success rate of neighbor 
discovery is observed under different time slot consumption 
(the ratio of successfully discovered neighbors to all neigh‑
bors). Reciprocal k' of the slope of the curve is used to repre‑

sent V all
i ( t ). The highlighted part in Fig. 11 is the time period 

when the central node discovers 62.5% of neighbors. The rate 
of the learning-based algorithm is k'Learn =
78.9 (slot/a new neighbor ). The rate of the traditional CRA is 
k'class = 192.3 (slot/a new neighbor ). The discovery rate is in‑

▼Table 1. Parameter value setting
η

η1 = 0.3
η2 = 0.5
η3 = 0.7
η4 = 0.8
η5 = 0.9

ϖ

ϖ1 = (0.2, 0.3, 0.2)
ϖ2 = (0.1, 0.4, 0.1)

ϖ3 = (0.1, 0.2, 0.05)
ϖ4 = (0.1, 0.2, 0.1)
ϖ5 = (0.1, 0.3, 0.2)

▲Figure 8. The relationship between network size and time slot expec⁃
tations

▲ Figure 9. Relationship between the covergence time slot expectation 
and the number of beams
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creased by about 60%. In addition, the discovery of the last 
neighbor takes time slots respectively. That is to say, the algo‑
rithm in Section 3 improves the convergence speed, but there 
is still a long tail problem.
5.2 Neighbor Maintenance Methods Based on Kalman 

Filter
1) Analysis of forecast errors: Fig. 12 shows the PE at differ‑

ent prediction moments. In the simulation, the horizontal ve‑
locity is 5 m/s, the vertical velocity is 20 m/s, and the predic‑
tion period is 1 s[33]. From a numerical point of view, the error 

is about 5 m, which shows that the prediction result based on 
the Kalman filter has a higher accuracy rate. The specific rea‑
son is that the filtering model predicts by the estimated Xk

^  at 
the next moment. If we consider the influence of actual noise, 
the prediction will be more accurate.

2) Analysis of discovery efficiency: In Fig.13, N ∈ [10, 50 ] 
nodes are randomly scattered in an area of 2 km × 2 km. The 
number of beams is 30. Comparing the two curves, the algo‑
rithm in Section 4 can greatly reduce the network delay.

The following part studies the ND convergence process of 
any node i. In Fig. 14, the topology size is fixed at 19, and K is 
fixed at 30 and 20. The meaning of the ordinate is time inter‑
val E1

i ( t ) between the discovery of two new neighbors. Ana‑

▲ Figure 10. Trends of neighbors discovered in different algorithms 
over time

CRA: Completely Random Algorithm

▲Figure 11. Comparison of discovery efficiency in the same node den⁃
sity network

CRA: Completely Random Algorithm

▲Figure 12. Position error after Kalman filtering

▲Figure 13. Comparison of convergence time of different algorithms in 
differentnetwork sizes
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lyze the “⋆” and “△” curves longitudinally from the slope of 
the curve. The filtering-based algorithm represented by the 

“⋆” curve maintains a high ND rate throughout the process. 
The curve can be fitted to a straight line, which means that the 
long tail problem of neighbor discovery is overcome. In K = 
30, when the filtering-based algorithm converges to 100%, the 
CRA algorithm only converges about 37%. Figs. 13 and 14 
show that adding the filtering model not only increases the dis‑
covery speed but also shortens the time. The reason is that be‑
fore the ND phase starts, the node has predicted a topology 
through the Kalman filter model as prior knowledge. Based on 
this prior knowledge, nodes can scan the targeted to shorten 
the discovery time.

3) Impact of mobility: In a three-dimensional scene, the 
UAV applies a phased array antenna to scan the entire sphere. 
To simplify the performance research of the proposed algo‑
rithm, a scene where a single UAV is in the center and other 
UAVs are uniformly and randomly distributed is observed. 
The following part studies probability Pxdis of any UAV being 
discovered after entering the network topology in the neighbor 
maintenance phase.

Fig. 15 is the comparison of the three neighbor discovery 
strategies. For example, when N = 8, compared with CRA, the 
efficiency of filtering-based algorithms is increased by 69.6%, 
and compared with learning-based algorithms by 36.9%. In 
addition, from the perspective of slope, kKF < kLA < kCRA, the 
node sensitivity is overcome to a certain extent. Compared 
with the classic CRA, the algorithm proposed in Section 4 
avoids the invalid scanning of blank areas and reduces the 
time. Compared with the LA scheme based on time slots to ob‑
tain prior knowledge, the algorithm in Section 3 obtains all 
prior knowledge before the neighbor discovery starts, which 
can improve the timeliness. In addition, because the nodes 

(beams) that have been discovered no longer occupy communi‑
cation resources, the sensitivity of the nodes is overcome to a 
certain extent. In Fig. 16, the left and right ordinates are 
Pxdis and Eall

i ( t ) respectively. It can be seen that under the 
same UAV density, Pxdis and Eall

i ( t ) increase with the increase 
of Parbit. The reason is that the increase of the random factor 
Parbit (in a mobile scene, an optimization factor that increases 
the probability that a random UAV enters the network topol‑
ogy is found) increases the scanning probability of other 
beams, which increases the probability of random UAVs dis‑
covery chances. At the same time, it also increases the prob‑

▲Figure 14. Comparison of discovery efficiency in the same node den⁃
sity network

CRA: Completely Random Algorithm

▲Figure 15. Comparison of convergence time of different neighbor dis⁃
covery strategies

CRA: Completely Random Algorithm

UAV: unmanned aerial vehicle
▲Figure 16. Probability of discovery and the average time slot for dif⁃
ferent numbers of neighbors
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ability of invalid scanning, which in turn increases the time of 
the entire network topology construction.
6 Conclusions

This paper proposes the sensing and communication inte‑
grated intelligent ND algorithms for UAV networks. Reinforce‑
ment learning is introduced to solve the problem that the radar 
detection range is not equal to the communication range in the 
integration. Simulation results show that the algorithm based 
on LA can increase the time efficiency by up to 32% com‑
pared with the classic scan-based algorithm, when the radar 
communication ratio η = 0.6. This paper also considers the 
high mobility of UAVs and designs an efficient neighbor main‑
tenance algorithm that predicts the node motion through the 
Kalman filter. In the current work, we only introduce a rela‑
tively simple LA algorithm to solve the problem of neighbor 
discovery in the UAV network. In the future, more learning al‑
gorithms can be introduced in combination with specific sce‑
narios to improve the efficiency of neighbor discovery.
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1 Introduction

Cloud computing platforms have become fundamental 
information infrastructures in modern society[1]. A 
large number of computing servers in one cluster are 
connected by high-speed communication networks 

and provide high concurrency for users’ remote accesses. cen‑
tral processing unit (CPU) and graphics processing unit (GPU) 
servers are dominantly used as core computing resources and 
virtualized into different computing resource pools to cater to 
various services. Computing tasks are calculated in the serv‑
ers and provide various services at the Infrastructure as a Ser‑
vice (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS) levels[2]. Tasks running on suitable servers can 
save cost and finish computing as soon as possible. Such task 
assignment is an important technology called task schedul‑
ing[3]. Bad task scheduling will waste computing resources, 
cost more, and lead to a bad user experience[4].

CPU servers are generally dominant in cloud platforms due 

to their universal computing architecture. However, with the 
rapid development of artificial intelligence (AI) technologies, 
the GPU has been more and more widely used in heteroge‑
neous clusters. Cluster heterogeneity is heterogeneous among 
computing servers, and between CPU and GPU within a 
server. In most cases, one cluster may have both the CPU 
server and the GPU server simultaneously. Consequently, task 
scheduling in CPU-GPU heterogeneous clusters is more com‑
plex and different[5].

Good task scheduling should have the following characteristics:
• Maximizing clusters’ system goals, e. g. throughput, en‑

ergy cost, Quality of Service (QoS), etc;
• Balancing networks and storage with computing, and pre‑

venting network jams, long-time idleness, hot end, and so on;
• Assigning tasks to the best-matched CPUs or GPUs as far 

as possible.
2 Framework of Task Scheduling for Clusters

Task scheduling in cloud environments is a hot issue be‑
cause of the prevalence of cloud computing. ARUNARANI et 
al. presented a comprehensive literature survey of task sched‑
uling strategies and the associated metrics suitable for cloud This work is supported by ZTE‑University‑Institute Fund Project under 

Grant No. IA20230629009.
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computing environments[3], in which the methods, applica‑
tions, and parameter-based measures utilized for task schedul‑
ing are discussed. QoS, ant colony optimization, particle 
swarm optimization, genetic algorithms, multi-processors, 
fuzzy algorithms, clustering, deadline constraints, and cost-
based algorithms were summarized and analyzed. As men‑
tioned by the survey, from 2003 to 2018, a large number of 
studies on different techniques to solve scheduling problems 
were conducted. YANG et al. reviewed task scheduling algo‑
rithms for cloud computing[6]. They divided scheduling algo‑
rithms into single-objective optimization algorithms and multi-
objective task scheduling algorithms. They also analyzed the 
representative algorithms of each method, and compared and 
summarized the advantages and disadvantages of different al‑
gorithms. The authors in Ref. [7] categorized scheduling meth‑
ods into traditional scheduling strategies, heuristic-based in‑
telligent algorithms, emerging swarm intelligence algorithms, 
and hybrid algorithms, which accomplished a review of nature-
inspired optimization techniques for scheduling tasks in cloud 
computing. SINGH et al. reviewed the meta-heuristics tech‑
niques for scheduling tasks in cloud computing[4], and pre‑
sented the taxonomy and comparative review of these algo‑
rithms. Methodical analysis was presented based on swarm in‑
telligence and bio-inspired techniques[4]. Since multi-
objective optimization can deal with multiple conflicting 
goals, HOSSEINZADEH et al. presented a comprehensive sur‑
vey and overview of the multi-objective scheduling ap‑
proaches designed for various cloud computing environ‑
ments[8]. They classified the scheduling schemes into different 
types such as reducing execution cost, reducing makespan, re‑

ducing SLA violation, and meeting deadlines, regarding ap‑
plied multi-objective optimization algorithms. PRITY et al. 
provided a review of nature-inspired optimization techniques 
for scheduling tasks[9]. A novel classification taxonomy and 
comparative review of these techniques were presented. 
JAWADE et al. gave a compact analytical survey on task 
scheduling[10], which vividly explained different approaches 
utilized for task scheduling in diverse works.

Since AI has played an increasingly significant role, clus‑
ters with GPU become common and important. Amazon AWS, 
Microsoft Azure, Ali Cloud, Huawei Cloud, Baidu Cloud, and 
so forth, provide GPU computing services in their clouds. The 
hardware in such clouds is the CPU-GPU cluster. Tasks and 
devices in the CPU-GPU cluster are heterogeneous. 
PRADHAN et al. compared and described various task sched‑
uling methods in heterogeneous cloud environments[5]. They 
categorized scheduling algorithms into heuristics and hybrid 
methods. Heuristics algorithms were categorized into static 
and dynamic scheduling. Dynamic scheduling was then cat‑
egorized into online and batch modes.

In general, task scheduling has two stages. System-level 
task scheduling is carried out in the first stage, whose goal is 
to optimize system performance, such as load balance, total 
computing efficiency, power consumption, system response, 
and temperature constraints. After tasks are assigned to 
nodes, task scheduling is carried out within the nodes in the 
second stage, whose goal is to optimize computing node per‑
formance, such as makespan, node computing efficiency, and 
node temperature. Fig. 1 shows the two-stage task scheduling 
framework.

▲Figure 1. Two-stage task scheduling framework

CPU: central processing unit      GPU: graphics processing unit

Switch Manage node System level task scheduling
Node-level task schedulingNode-level task scheduling

T1 T3
ST11 ST31 ST32 ST12
Subtask queue
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Task queue
T1 T2 T3 T4 GPU taskassignment
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CPU GPU
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3 Task Scheduling of CPU-GPU Heteroge⁃
neous Cluster
Compared with CPU clusters, the CPU-GPU cluster shows 

more heterogeneity in terms of architecture and task types. 
The task scheduling framework for CPU-GPU heterogeneous 
cluster is shown in Fig. 2.

In node-level task scheduling, tasks could be classified as 
CPU tasks and GPU tasks depending on the type of device 
used. In node inner task scheduling, GPU tasks can be as‑
signed to different GPU devices since there are multiple 
GPUs in the node. Based on different strategies and method‑
ologies, the task scheduling for the CPU-GPU heterogeneous 
clusters still can follow heuristic methods and statistic meth‑
ods partition.
3.1 Heuristic Methods

Heuristic task scheduling relies on human-designed models 
to strategies and performs task assignments[11–31]. Task assign‑
ments follow human-defined rules and are implemented by 
mathematical models and algorithms.

Early task scheduling was still based on the Hadoop frame‑
work[11]. The hybrid map method minimized the overall Ma‑
pReduce job execution time by using profiles collected from 
dynamic monitoring of the map task behavior.

Later, energy consumption was taken into consideration in 
task scheduling that focused on system-level energy optimiza‑
tion[12]. The coarse-grained and fine-grained strategies of the 
Waterfall model were migrated into the scheme. The energy ef‑
ficiency problem was translated into static power consumption 
loss and resource utilization problems. According to the het‑
erogeneity of the tasks and task types, buddy allocation was 
proposed to improve energy efficiency. HUO et al. abstracted 
computing resources into many identical virtual CPUs and for‑
mulated the scheduling problem into an optimization problem 
with integer variables and nonlinear constraints[12]. The energy 

consumption minimization problem was formulated as an inte‑
ger nonlinear programming problem, necessitating the determi‑
nation of both a task assignment plan and a tailored resource 
allocation plan.

Similar to energy consumption, temperature becomes an op‑
timized goal of task scheduling, especially for big clusters. 
Temperature, reliability, and computing performance were 
taken into account to reduce node performance differences 
and improve throughput per unit time in clusters[13]. Tempera‑
ture heat islands caused by slow nodes could be prevented by 
optimizing scheduling. CAO and WANG proposed a novel 
task-scheduling model for GPU clusters with temperature limi‑
tations[14]. GPU and temperature were both considered during 
task scheduling. A state matrix was designed to monitor the 
GPU cluster and provide status information for the scheduler. 
Compared with the benchmark scheduling model, the loss of 
scheduling performance is more acceptable.

In order to deal with the problem of unbalanced workload, 
task classification and packing were both used to match CPU 
and GPU loads[15]. Tasks were classified into six classes ac‑
cording to parallelism degrees and workloads, and then as‑
signed to minimize the execution time[16]. The approach is 
forming a good match between the task distribution and the ar‑
chitecture of the heterogeneous cluster through the task classi‑
fications and combinations. Besides task classification, CHEN 
et al. proposed a multi-granularity partition approach to syn‑
chronizing data flow graphs and task partition on CPU and 
GPU tasks[17]. This method can satisfy load balancing and im‑
prove the utilization rate of the cluster. CI et al. designed an 
adaptive scheduling strategy to alleviate imbalance and under-
utilization[18], which logically treated all GPUs in the cluster as 
a whole. Every cluster node maintains a local information 
table of all GPUs. Once a GPU call request is received, a node 
will select a GPU to run the task adaptively based on this 
table. This strategy could significantly improve the GPU utili‑
zation rate and reduce mean waiting time.

Some task scheduling strategies focus on makespan optimi‑
zation. This can maximize the parallel degree between CPUs 
and GPUs. Ref. [19] presented a scheduling algorithm using a 
generic methodology. The main idea of the approach is to de‑
termine an adequate partition of the set of tasks on the CPUs 
and the GPUs using a dual approximation scheme. ZHU et al. 
separated data into different data splits first, and then the 
scheduler assigned tasks to the CPU or GPU according to 
their computing resources[20]. In this case, the data size be‑
comes a measure of processing time.

Different types of tasks may be dominant in different clus‑
ters, and task-type-oriented scheduling strategies are then de‑
signed. A parallel version of the min-min heuristic method, 
which is an advanced parallel cellular genetic algorithm 
(CGA), was proposed for large instances of tasks in a clus‑
ter[21]. For short tasks, SHAO et al. implemented a container-
based batch computing system, which accepted and executed ▲ Figure 2. Task scheduling framework for CPU-GPU heterogeneous 

cluster
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users’ jobs through container images and specified configura‑
tions[22]. A shortest-job-first-based scheduling policy was used 
to ensure the priority of the short tasks and to prevent long 
tasks from starving. For gaming tasks, ZHANG et al. proposed 
a fine-grained scheduling framework that decomposed game 
workloads into small and independent render tasks and dis‑
patched the small tasks to different machines[23]. The schedul‑
ing objective was to maximize a utility function. If all re‑
sources are fully used by games, the utility function achieves 
its maximum value. The proposed approach requires only 
26.4% of the servers compared with packing algorithms. Since 
task scheduling strategies based on artificial intelligence be‑
come more and more prevalent in clusters, efficient machine 
learning task scheduling has attracted increasing research in‑
terests[24–28]. CHEN et al. focused on convolutional neural net‑
works (CNN) -based task scheduling[24]. The scheduling strat‑
egy leverages an analytical prediction model to optimize the al‑
location of computing resources for impending tasks, thereby 
enhancing system efficiency and prioritizing user satisfaction. 
To improve performance and reduce energy consumption, 
CHEN et al. proposed a prediction method to predict the 
completion time and energy consumption of deep training 
tasks first, and then used the GPU allocation strategy algo‑
rithm that depended on the prediction of completion time and 
energy consumption to assign tasks[25]. For more time-
consuming training tasks, HAN et al. proposed a method to 
eliminate network contention by jointly optimizing network to‑
pology and communication patterns in distributed training[26]. 
CHEN et al. proposed a training-inference joint scheduling 
framework, called DeepBoot, to support training tasks and uti‑
lize the idle GPUs in the inference cluster[27]. DeepBoot could 
overcome the unbalanced GPU utilization stemming from the 
periodic difference in training and inference workload. CHEN 
et al. proposed a QoS-aware scheduling framework for a deep 
learning R&D platform[28]. The framework provides lightweight 
offline profiling and online dynamic scheduling on GPU clus‑
ters. Using the lightweight offline profiler, the framework 
could provide a prediction model according to the domain-
specific information of deep learning tasks derived from a com‑
prehensive characterization.

Some research focuses on the methodology of scheduling al‑
gorithms[29–31]. ZHANG and WU presented the weighted 
system-level scheduling algorithm (WSLSA) which involved 
the weights of the processor[29]. Due to the doubly linked list 
data structure for system-level tasks, the algorithm could as‑
sign and remove a task in a single direction (denoted by 
WSLSA-S) from the task list or it could also assign and re‑
move a task in both directions (denoted by WSLSA-B) from 
the task list. ITURRIAGA et al. presented a parallel imple‑
mentation on CPU/GPU of two variants of a stochastic local 
search method to efficiently solve the scheduling problem in 
heterogeneous computing systems[30]. Both methods are based 
on a set of simple operators to keep the computational com‑

plexity as low as possible. A two-level dynamic scheduling al‑
gorithm of CPU and GPU cooperative computing in heteroge‑
neous clusters was proposed[31]. The algorithm could dynami‑
cally distribute data according to each node’s computing ca‑
pability and schedule tasks dynamically between the CPU and 
GPU in the node.
3.2 Statistic Methods

Different from heuristic task scheduling, statistic methods 
learn scheduling strategies from clusters of system data. The 
system data include CPU utilization information, GPU utiliza‑
tion information, host memory utilization information, GPU 
memory utilization information, node uplink traffic rate, node 
downlink traffic rate, global load throughput of GPU, global 
store throughput of GPU, etc. With the burgeoning develop‑
ment of AI, deep reinforcement learning and deep neural net‑
works are employed in tasking scheduling[32–35].

By using the deep Q-network, the two-stage scheduling 
model was adopted to learn to perform the current optimal 
scheduling actions online according to the runtime status of 
cluster environments, the characteristics of video tasks, and 
the dependencies between video tasks[32]. The interference-
aware workload parallelization (IAWP) method assigns sub‑
tasks with dependencies to the appropriate computing units, 
taking the interference of subtasks on the GPU by using neu‑
ral collaborative filtering into account[33]. To make the learning 
of neural networks more efficient, pre-training is adopted in 
the two-stage scheduler. The transfer learning technology is 
used to efficiently rebuild the task scheduling model referring 
to the existing model.

Since prediction-based schedulers are limited in terms of 
their prediction accuracy and offline-profiling overhead, the Q-
learning framework was designed to model the R&D scenarios 
and was proposed to build a series of implementations includ‑
ing state space, action space, reward function, and update 
scheme for task scheduling[34]. The learning agent could learn 
from the feedback on task performance independently and 
continuously to adjust online task scheduling decisions. The 
Q-learning-based scheduler significantly improves the task av‑
erage normalized throughput and makespan. Moreover, the 
proposed scheduler is more suitable for long-term deep-
learning R&D scenarios.

The deep network can be used to produce task scheduling 
strategy candidates first[35]. A set of feasible solutions is then 
generated through cross-variance and other operations. The 
optimal solutions are screened out and stored in the empirical 
buffer area. Finally, the neural network parameters are opti‑
mized through the empirical buffer samples.

Compared with heuristic task scheduling methods, statistic 
methods have demonstrated fewer achievements. This is be‑
cause task scheduling is dynamic and non-deterministic poly‑
nomial (NP)-hard. It is not easy to obtain a suitable deep net‑
work to efficiently describe all behaviors of task scheduling. 
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Along with the evolution of machine learning technologies, 
more and more algorithms will emerge and provide better per‑
formance.
4 Task Scheduling of GPU

Modern GPU computing allows application programmers to 
exploit parallelism using new parallel programming languages 
such as CUDA and OpenCL and a growing set of familiar pro‑
gramming tools, leveraging the substantial investment in paral‑
lelism that high-resolution real-time graphics require and AI 
applications[36]. Different from the CPU, the GPU cannot be 
partitioned into arbitrary virtual GPUs with cores. GPUs also 
cannot compute without cooperation with the CPU. Therefore, 
GPUs show different characteristics of computing. GPUs offer 
the capability to handle multiple tasks at the process level, 
that is, multiple processes can run on one GPU. However, fre‑
quent process switching may destroy the hardware pipeline of 
GPUs. Usually, a server may have several GPUs. Different 
GPUs are treated as different devices although such GPUs are 
connected by high-speed interconnection networks. As a re‑
sult, tasks can be scheduled among GPUs and processed 
within a GPU server, which is device-level task scheduling. 
The task scheduling framework of GPU is shown in Fig. 3.

Most research focuses on task scheduling within GPU[37–45]. 
The goal of task scheduling within GPU is to exploit the 
throughput of the GPU kernel and give the best separation of 
SM or threads. In the early stage, AUGONNET et al. pre‑
sented StarPU, a runtime system that efficiently exploited het‑
erogeneous multicore architectures[37]. StarPU provides a uni‑
form execution model and a high-level framework to design 
scheduling policies. StarPU permits dynamically selecting the 

strategies at runtime, thus letting the programmer try and 
choose the most efficient strategy. This makes it possible to 
benefit the scheduling without setting restrictions or mak‑
ing excessive assumptions. Later, ZHONG and HE pro‑
posed Kernelet, a runtime system that improved the 
throughput of concurrent kernel executions on the GPU[38]. 
Kernelet embraces transparent memory management, PCIe 
data transfer techniques, and dynamic slicing and schedul‑
ing techniques for kernel executions. A novel Markov chain-
based performance model to guide the scheduling decision 
was proposed in Kernelet. Recently, ZOU et al. proposed 
RTGPU that combined fine-grain GPU partitioning on the 
system side with a novel scheduling algorithm on the theory 
side[39]. RTGPU leverages a precise timing model of the 
GPU applications with the persistent threads technique and 
improves fine-grained utilization through interleaved execu‑
tion. The RTGPU real-time scheduling algorithm can pro‑
vide real-time guarantees of meeting deadlines for GPU 
tasks with better scheduling ability.

Besides the scheduling framework, some research focuses 
on scheduling strategies[40–41]. LOPEZ-ALBELDA et al. em‑
ployed a scheduling theory to build a model that took into ac‑
count the device capabilities, workload characteristics, con‑
straints, and objective functions[40]. The heuristic called 
NEH-GPU, which combines an existing heuristic with a GPU 
task execution model, has been developed. HUANG et al. 
proposed a dynamic GPU task balance scheduling called the 
coefficient of balance and equipment history ratio value (CB-
HRV) task scheduling[41], which was developed to reduce sys‑
tem energy consumption during task execution by allocating 
tasks based on workload balance, thereby improving GPU en‑

▲Figure 3. Task scheduling framework of GPU

GPU: graphics processing unit      SM: streaming multi-processors

… …

GPU task scheduler
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SM/Thread scheduler
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ergy usage. The CB-HRV algorithm is more balanced, and it 
allows the computing device to be utilized more reasonably 
and efficiently.

For special types of tasks, an efficient task scheduling 
frame was designed[42–44]. LI et al. proposed a two-level sched‑
uling strategy to distribute irregular tasks and enable resource 
sharing on GPUs, by managing tasks and threads hierarchi‑
cally[42]. The framework manages both tasks and threads in the 
two levels to allow for helpful resource sharing. KWON et al. 
proposed Nimble, a deep-learning execution engine that runs 
GPU tasks in parallel with minimal scheduling overhead[43]. 
Nimble introduces a technique called ahead-of-time (AoT) 
scheduling, which pre-runs the given neural network once ac‑
cording to the generated stream mapping and records all the 
GPU tasks as an execution trace. AoT scheduling also inter‑
cepts memory allocation/free requests from the base frame‑
work and reserves the GPU memory allocated in the pre-run. 
At the end of the AoT scheduling, Nimble packs the execution 
trace and reserves the memory into a task schedule. CHEN et 
al. presented Atos, a task-parallel GPU dynamic scheduling 
framework that was especially targeted at dynamic irregular 
applications[44]. Atos exposes additional concurrency by sup‑
porting task-parallel formulations of applications with relaxed 
dependencies, achieving higher GPU utilization. Atos also of‑
fers implicit task-parallel load balancing in addition to data-
parallel load balancing, providing users the flexibility to bal‑
ance between them to achieve optimal performance.

However, there is a relative scarcity of research on task 
scheduling for muti-GPU systems. TANG et al. proposed 
AEML, an acceleration engine for multi-GPU load-balancing 
in distributed heterogeneous environments[45]. AEML could ef‑
fectively integrate GPUs into the distributed processing frame‑
work and achieve good load balance among multiple heteroge‑
neous GPUs. To achieve the best load-balancing among mul‑
tiple heterogeneous GPUs, the AEML model utilizes four tech‑
niques: a fine-grained task mapping mechanism, a device re‑
source unified management scheme, a novel resource-aware 
GPU task scheduling strategy, and a feedback-based stream 
adjustment scheme.
5 Evaluation

The goal of task scheduling is to exploit all potential paral‑
lelism of heterogeneous clusters composed of multi-CPUs and 
multi-GPUs. Some metrics are adopted to evaluate and com‑
pare different methods, such as makespan, load balance, re‑
source utilization, energy, speedup and QoS[46–47]. The sched‑
uling methods will optimize several metrics simultaneously. 
We summarize the motioned scheduling technologies in 
Table 1.

From Table 1, it can be clearly seen that most algorithms fo‑
cus on makespan and resource utilization. This is because that 
makespan is very important for cluster users’ feeling. Re‑
source utilization optimization can improve cluster system effi‑

▼Table 1. Summary of scheduling technologies based on evaluation metrics

Task Scheduling 
Technology

Hybrid map[11]

Energy efficient task 
scheduling[12]

Energy-minimized 
scheduling[13]

Task scheduling with 
temperature 

constraint[14–15]

PTA&WSLSA[16]

Multi-granularity parti‑
tion[17]

Adaptive and transparent 
task scheduling[18]

Dual approximation 
technique[19]

Data partition[20]

Large instance 
sheduling[21]

Short task scheduling[22]

Fine-grained 
scheduling[23]

CNN-based task 
scheduling[24]

GAS[25]

Isolated scheduling[26]

DeepBoot[27]

QoS guarantee 
scheduling[28]

Greedy heuristics[29]

Local serach[30]

CPU and GPU 
cooperative scheduling[31]

Learning driven schedul‑
ing[32–33]

Q-learning[34]

Dynamic priority task 
scheduling[35]

StarPU[37]

Kernelet[38]

RTGPU[39]

Heuristics for concurrent 
task scheduling[40]

Task balance 
scheduling[41]

Two-level task 
Scheduling[42]

Nimble[43]

Atos[44]

AEML[45]

Evaluation Metrics
Speed‑

up
√

√

√

√

√
√
√

Energy

√

√

√

√

√

Load 
balance

√
√

√

√

√

Makes‑
pan

√
√

√

√
√

√

√
√
√

√

Resource 
utilization

√

√

√
√

√
√

√

√
√
√
√

√

QoS

√
√

√

√

CNN: convolutional neural networkCPU: central processing unitGAS: GPU allocaion strategyGPU: graphics processing unit

PTA: packing task algorithmQoS: Quality of ServiceWSLSA: weighted system-level scheduling algorithm
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ciency, which is the main purpose of task scheduling technolo‑
gies. Energy-based task scheduling is mainly designed for 
GPU clusters since GPUs are highly energy-consuming. Heu‑
ristic methods are dominant since statistic-based approaches 
require running data from the real clusters which are hard to 
collect. However, learning-based scheduling can provide more 
intelligent scheduling strategies and will attract more attention 
in future research.
6 Conclusions

Task scheduling is a long-term hot research topic in compa‑
nies with cloud computing and AI’s flourishing. Most task 
scheduling strategies are heuristic and based on experts’ ex‑
perience. Statistic strategies have attracted researchers’ inter‑
est recently. Different from task scheduling of CPU clusters, 
task scheduling of CPU-GPU clusters is more complex due to 
heterogeneous system composition. Task-oriented scheduling 
focuses on short tasks, gaming tasks, deep learning tasks, etc. 
This paper also reviews task scheduling strategies within 
GPU. This is because GPU has process-level parallel ability 
and incompatible tasks will decrease GPU’s workflow and 
parallelism.

This paper describes a task scheduling framework for CPU-
GPU heterogeneous clusters and a task scheduling framework 
for GPU servers with multiple GPUs. From the two frame‑
works, we can clearly see that task scheduling can be sepa‑
rated into the system level, the node level, and the device 
level. Although research achievements in statistic task sched‑
uling are less than heuristic task scheduling, statistic task 
scheduling is still a highly potential technology.
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Abstract: Three-dimensional reconstruction technology plays an important role in indoor scenes by converting objects and structures in indoor 
environments into accurate 3D models using multi-view RGB images. It offers a wide range of applications in fields such as virtual reality, aug‑
mented reality, indoor navigation, and game development. Existing methods based on multi-view RGB images have made significant progress in 
3D reconstruction. These image-based reconstruction methods not only possess good expressive power and generalization performance, but also 
handle complex geometric shapes and textures effectively. Despite facing challenges such as lighting variations, occlusion, and texture loss in in‑
door scenes, these challenges can be effectively addressed through deep neural networks, neural implicit surface representations, and other tech‑
niques. The technology of indoor 3D reconstruction based on multi-view RGB images has a promising future. It not only provides immersive and 
interactive virtual experiences but also brings convenience and innovation to indoor navigation, interior design, and virtual tours. As the technol‑
ogy evolves, these image-based reconstruction methods will be further improved to provide higher quality and more accurate solutions to indoor 
scene reconstruction.
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1 Introduction

Traditional 3D reconstruction techniques play a crucial 
role in the field of computer vision and encompass com‑
monly used tools and libraries such as ColMap[1] and 
OpenMVS[2]. These techniques estimate the 3D posi‑

tions of points in a scene through feature extraction and match‑
ing, followed by steps like sparse point cloud generation and 
dense point cloud generation to create dense point clouds and 
3D models with high-quality geometry and texture. These tradi‑
tional 3D reconstruction techniques find widespread applica‑
tions in various domains, including virtual reality, augmented 
reality, indoor navigation, building reconstruction, and cultural 
heritage preservation tasks. They perform well in handling 
small objects, small-scale scenes, and simple scenes. However, 
when it comes to indoor scenes containing a large number of 
textureless or repetitive texture regions, traditional reconstruc‑
tion methods struggle to extract meaningful features, resulting 
in significant holes and noise during the reconstruction process. 

This limitation restricts their applicability in large-scale and 
complex scenes.

With the continuous advancement of technology, there is in‑
creasing attention on deep learning-based 3D reconstruction 
techniques for indoor scenes[3–5]. Compared to traditional 3D re‑
construction methods, these techniques leverage the power of 
deep learning models in processing and analyzing multiple-view 
RGB images to extract feature representations of the scene, lead‑
ing to high-quality 3D model reconstruction. Specifically, convo‑
lutional neural networks (CNNs), Transformer[6], and vision 
Transformers (ViT) [7] are used to process and analyze multiple-
view RGB images. These models extract feature representations 
of objects in the scene. Through learning and training, these 
deep learning models gain an understanding of the geometric 
shapes, texture information, and other visual cues present in the 
images, encoding them as feature representations. Once the fea‑
ture representations of objects are obtained, 3D reconstruction 
will be conducted. This includes estimating the 3D coordinates 
of points in the scene and performing optimization and refine‑
ment to obtain accurate 3D reconstruction results.

In recent years, there has been rapid development in combin‑
ing neural radiance fields (NeRF)[8] with neural implicit surface-
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based techniques for the 3D reconstruction of indoor scenes. 
This development is driven by the remarkable success of 
NeRF[8] in the field of novel view synthesis. These methods uti‑
lize neural network models to learn implicit representation func‑
tions of objects, enabling the capture of their geometric shapes 
and texture information without the explicit representation of 
3D geometry. Compared to explicit representations, such as 
point clouds and voxel grids, these methods offer higher-
resolution 3D reconstruction with enhanced expressive power 
and generalization capabilities. They can handle complex 
scenes and shape variations by leveraging the flexibility of neu‑
ral networks in modeling intricate geometric details and captur‑
ing rich texture information. By learning implicit representa‑
tions of objects, these techniques allow for more accurate and 
detailed reconstructions, even in the presence of challenging 
factors like occlusions and varying lighting conditions. The im‑
plicit nature of the representation enables these methods to gen‑
erate novel views of the scene from previously unseen view‑
points, contributing to their growing success in the field of in‑
door scene 3D reconstruction.

In summary, the use of multi-view RGB images for indoor 
scene 3D reconstruction offers a new approach to achieving low-
cost and high-quality reconstructions. It not only reduces equip‑
ment requirements and operational complexity but also presents 
broad application prospects in various fields, including virtual 
reality, augmented reality, indoor navigation, and game develop‑
ment. However, existing techniques also face several chal‑
lenges. Traditional methods demonstrate stability in handling 
small objects, small-scale scenes, and simple scenes but en‑
counter difficulties in dealing with textureless regions and re‑
petitive texture regions in indoor scenes. On the other hand, 
deep learning-based techniques for indoor scene 3D reconstruc‑
tion, mostly relying on computationally expensive 3D CNNs[9] or 
structures like Transformer[6], require processing a large volume 
of image data for large-scale indoor scenes. Additionally, gener‑
ating high-resolution voxel grids consumes significant storage 
resources, posing challenges in terms of computational re‑
sources and storage space. Furthermore, capturing details and 
handling variations in complex scenes and shape changes de‑
mand more complex and robust deep learning models, along 
with considerable time and effort for data annotation and model 
training. Inspired by the tremendous success of NeRF[8] in the 
field of novel view synthesis, many techniques combining neu‑
ral implicit surface-based methods with NeRF have rapidly de‑
veloped for indoor scene 3D reconstruction. These methods em‑
ploy neural network models to learn implicit representation 
functions of objects, enabling the capture of geometric shapes 
and texture information without explicit representation of 3D ge‑
ometry. Compared to explicit representation methods, neural 
implicit surface-based approaches achieve higher-resolution 3D 
reconstruction, possess stronger expressive power, and can 
handle complex scenes and shape variations.

Future trends in the development of indoor scene 3D recon‑

struction include enhancing the robustness of traditional meth‑
ods and their adaptability to handle textureless scenes. Efforts 
will be made to strengthen the research on data utilization effi‑
ciency and generalization capabilities in deep learning-based 
approaches. Additionally, exploring performance improvements 
of neural implicit surface-based methods in complex scenes 
will be a focus. As technology evolves and innovates, multi-
view-based indoor 3D reconstruction techniques will continue 
to provide more accurate and realistic ways of generating 3D 
scene content for various fields. These advancements will en‑
able the creation of highly precise and realistic 3D scenes, ben‑
efiting applications in virtual reality, augmented reality, indoor 
navigation, and game development, among others.
2 Multi-View-Based Indoor 3D Reconstruction

The multi-view-based indoor 3D reconstruction techniques 
are of significant importance in the field of computer vision. Ex‑
isting methods can be broadly classified into three categories. 
The first category is the traditional 3D reconstruction methods 
based on feature matching, which recovers the 3D structure of 
the scene by extracting feature points from images and perform‑
ing feature matching. Methods such as ColMap[1] and Open‑
MVS[2] utilize techniques like feature point matching, camera 
pose estimation, and triangulation to achieve sparse and dense 
3D reconstruction. These methods have shown good results for 
indoor scenes, but they perform poorly in scenarios with texture‑
less or low-texture regions.

The second category is the deep learning-based 3D recon‑
struction techniques, which directly learn the 3D representation 
of the scene from multi-view image data. These methods can ex‑
tract rich semantic and geometric information from images and 
achieve end-to-end 3D reconstruction with good generalization. 
Examples of such methods include Pixel2Mesh[10], SimpleRe‑
con[11], and NeuralRecon[12], which have achieved significant ad‑
vancements in indoor scene reconstruction and can generate 
high-quality 3D models.

The third category is the 3D reconstruction techniques based 
on neural implicit surface representation, where the implicit 
representation function of the object is learned by neural net‑
works, eliminating the need for explicit representation of 3D ge‑
ometry. These methods can handle complex scenes and shape 
variations and generate highly accurate 3D models. Examples 
of such methods include VolSDF[13] and NeuS[14], which have 
made notable progress in indoor scene reconstruction, enabling 
high-fidelity geometry and texture reconstruction. By leveraging 
image data from multiple viewpoints, these methods can recon‑
struct the 3D structure and texture information of indoor 
scenes, providing a foundation for applications such as indoor 
navigation, virtual reality, and augmented reality.
2.1 Stereoscopic Matching-Based 3D Reconstruction Methods

Traditional stereoscopic matching-based 3D reconstruction 
methods, such as ColMap[1] and OpenMVS[2], play a significant 
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role in indoor 3D reconstruction. ColMap integrates Structure-
from-Motion (SfM) and Multi-View Stereo (MVS) technologies, 
while OpenMVS[2] focuses specifically on MVS. These tools pos‑
sess strong capabilities and have become standard tools in both 
academia and industry for generating high-quality 3D models 
from multi-view RGB images. However, these traditional meth‑
ods still face several challenges. They perform poorly in dealing 
with large areas devoid of textures, which often leads to feature 
matching failures and consequently impacts reconstruction ac‑
curacy. Additionally, these methods require significant compu‑
tational resources and storage space, especially when handling 
large-scale scenes, which can be limiting factors. Furthermore, 
these traditional methods have limitations when dealing with 
closed and transparent surfaces, as well as scenes with complex 
textures and fine geometric structures. Therefore, researchers 
are continuously working to enhance these methods to improve 
their performance and robustness, particularly in dealing with 
complex scenes and textureless regions. Future research direc‑
tions may include better addressing these challenges to enable 
traditional feature matching methods to be more effective in a 
wider range of application scenarios.

Fig. 1 shows the workflow of matching-based 3D reconstruc‑
tion method. These methods typically involve the following de‑
tailed procedures and techniques.
2.1.1 Image Acquisition and Feature Extraction

Multiple images are captured from different viewpoints using 
cameras or a camera system. For each image, feature extraction 
algorithms (e.g., SIFT[15], SURF[16], or ORB[17]) are used to detect 
and describe key points and feature descriptors in the images. 
For example, in ColMap[1], the input images are preprocessed 
by converting them to grayscale to reduce computational com‑
plexity and improve robustness. Then, histogram equalization is 
applied to enhance contrast and details. Next, the classic Scale-
Invariant Feature Transform (SIFT) algorithm[15] is used with 
various optimizations and improvements to extract stable and 
discriminative key points and compute descriptive feature de‑
scriptors. These extracted key points and descriptors are essen‑
tial input data for subsequent 3D reconstruction tasks. Col‑
Map[1] also provides features such as GPU acceleration, visual‑
ization, and debugging tools to enhance the efficiency and con‑
venience of feature extraction.

2.1.2 Camera Pose Estimation
Camera pose estimation, a crucial step in 3D reconstruction, 

is used to estimate the position and orientation of cameras in 
the world coordinate system. Feature matching algorithms (e.g., 
based on feature descriptors or optical flow) are used to match 
the feature points between different images. Through geometric 
verification and filtering of the matched point pairs, the relative 
camera poses and parameters, i.e., camera pose estimation, can 
be obtained. For example, OpenMVG[18] provides a selection of 
feature extraction algorithms based on specific application re‑
quirements. It estimates camera rotation and translation through 
fundamental matrix estimation and pose recovery. Fundamental 
matrix estimation calculates the fundamental matrix between 
two views from the results of feature matching, and then camera 
rotation and translation can be inferred by solving the funda‑
mental matrix. To further improve reconstruction accuracy and 
stability, OpenMVG[18] also offers camera network optimization. 
By performing bundle adjustment and other global optimization 
algorithms, the poses of all cameras can be optimized to mini‑
mize reprojection errors and maintain consistency. Camera net‑
work optimization helps correct errors in feature matching and 
camera pose estimation, resulting in more accurate reconstruc‑
tion results.
2.1.3 3D Point Cloud Generation and Reconstruction

3D point cloud generation and sparse/dense reconstruction 
are key steps in 3D reconstruction, and popular toolkits like 
ColMap[1], OpenMVG[18], and OpenMVS[2] provide correspond‑
ing functionalities. These tools can generate 3D point clouds 
from multi-view images, converting the feature points in the im‑
ages into 3D points through feature extraction, feature match‑
ing, and camera pose estimation. This process produces a 
sparse point cloud, representing the geometric structure of the 
scene with only a small number of key points. Subsequently, 
dense point cloud generation is performed by interpolating or 
optimizing to fill the gaps between sparse points, resulting in a 
denser point cloud with richer details. ColMap[1] employs vari‑
ous feature extraction and matching algorithms and offers Multi-
View Geometry (MVG) and incremental sparse reconstruction 
algorithms. OpenMVG[18] focuses more on geometry recovery 
and camera pose estimation using algorithms such as fundamen‑
tal matrix estimation and bundle adjustment. OpenMVS[2] is 
dedicated to dense reconstruction, utilizing multi-view stereo‑

▲Figure 1. Workflow of matching-based 3D reconstruction methods
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scopic matching algorithms to generate a denser point cloud.
Finally, through steps such as triangulation, mesh optimiza‑

tion, and texture mapping, it is possible to generate a 3D mesh 
model with continuous surfaces and textures. Different mesh 
generation algorithms and techniques can be selected and opti‑
mized according to application requirements to obtain high-
quality mesh models.
2.2 Deep Learning-Based 3D Reconstruction Methods

Traditional 3D reconstruction methods based on deep learn‑
ing, such as SimpleRecon and NeuralRecon, represent the ap‑
plication of deep learning techniques in the field of 3D recon‑
struction, offering numerous innovations and advantages. These 
methods harness the powerful capabilities of deep learning, le‑
veraging structures like CNNs to infer depth and geometric in‑
formation from multi-view RGB images. Approaches like Sim‑
pleRecon and NeuralRecon utilize computationally expensive 
deep learning structures, including 3D CNNs, to model the 
three-dimensional geometry of scenes, enabling them to pro‑
duce high-quality 3D reconstruction results. While these meth‑
ods often require substantial training data and model training 
time, they excel in handling complex scenes and scenarios with 
shape variations. Compared to traditional feature-based meth‑
ods, deep learning-based 3D reconstruction methods exhibit 
higher levels of automation and robustness. They can overcome 
some of the limitations of feature-based methods in textureless 
and repetitive texture regions and can handle more complex 
scenes and geometric structures. These methods often benefit 
from related work in deep learning, such as 3D point cloud pro‑
cessing and image semantic segmentation. Despite showing im‑
mense potential in 3D reconstruction, deep learning-based 
methods still face several challenges. Firstly, these methods of‑
ten require significant computational resources, especially 
when generating high-resolution voxel grids. Secondly, model 
training demands substantial computational resources and time, 
typically relying on a large amount of annotated data. Addition‑
ally, these methods may be susceptible to issues like motion 
blur and discontinuities when dealing with complex scenes, par‑
ticularly in the presence of dynamic objects or camera motion. 
Furthermore, compared to tradi‑
tional methods, these methods 
may be less sensitive to scene 
details and textures. Therefore, 
future research directions may 
include improving the efficiency 
and generalization capabilities 
of models and enhancing their 
ability to handle complex scenes 
and dynamic objects. Attention 
should also be given to self-
supervised and unsupervised 
training methods for deep learn‑
ing models to reduce reliance on 

extensive annotated data.
Fig. 2 shows the workflow of convolution-based 3D recon‑

struction techniques, which mainly consists of feature extrac‑
tion, cost volume construction, and cost volume regularization. 
These steps leverage the powerful capabilities of deep learning 
and convolutional neural networks to achieve accurate recon‑
struction and depth estimation from images, with wide applica‑
tion prospects in computer vision, robotics, augmented reality, 
and other fields.
2.2.1 Feature Extraction

Feature extraction is the first step in 3D reconstruction, aim‑
ing to extract useful features from input images. CNNs are com‑
monly used as feature extraction networks, with popular net‑
work architectures including ResNet[19] and U-Net[20]. These net‑
works can extract local and global features from images and pro‑
vide more representative feature representations for subsequent 
steps. In the feature extraction process, techniques such as fus‑
ing prior information and hierarchical convolution can be used 
to integrate features from different modalities and scales. For 
example, SimpleRecon[11] combines pose, geometry features, 
and depth image features through convolutional feature extrac‑
tion, while NeuralRecon[12] utilizes distance priors obtained 
from the MVS process to ensure accuracy in texture-rich and 
edge regions, and normal priors to preserve completeness in 
texture-lacking regions.
2.2.2 Cost Volume Construction

The cost volume is a key concept in 3D reconstruction and is 
used to represent the similarity of image matching under differ‑
ent depth hypotheses. The basic idea of cost volume construc‑
tion is to use a plane sweeping algorithm to project the source 
images onto parallel planes of a reference camera frustum and 
compute the similarity among the projected images. This pro‑
cess can be achieved through pairwise image matching and 
view aggregation. The construction of the cost volume can effec‑
tively filter out reliable depth hypotheses and provide a basis 
for subsequent depth estimation. Since the disparity values are 
in pixel units, this task becomes a classification problem, where 

▲Figure 2. Overall structure of learning-based methods
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each class represents a discretized disparity value. Generally, 
CNNs can produce more reliable results. For MVS, the methods 
for generating the cost volume are mainly divided into two cat‑
egories. For example, MVSNet[21] applies variance to all feature 
vectors to construct the cost volume, while DPSNet[22] concat‑
enates features pair by pair and averages all N-1 volumes to ob‑
tain the final cost volume.
2.2.3 Cost Volume Regularization

The purpose of cost volume regularization is to predict rela‑
tively accurate depth values based on aggregated features and 
smooth and refine the cost volume to generate high-quality 
depth maps. Common methods for cost volume regularization in‑
clude 3D CNN-based neural networks, such as those used in 
Atlas[23], recurrent neural networks (RNNs) as in DHC-
RMVSNet[24], and a coarse-to-fine aggregation strategy used in 
NeuralRecon[12]. Among them, 3D CNN can aggregate local and 
global features across all dimensions but requires higher com‑
putational cost; RNN reduces memory consumption by sequen‑
tially processing each depth hypothesis; the coarse-to-fine strat‑
egy improves the accuracy and details of the depth map through 
multiple stages of prediction and refinement.

In summary, the workflow of convolution-based 3D recon‑
struction includes three key steps: feature extraction, cost vol‑
ume construction, and cost volume regularization. Through 
these steps, features can be extracted from input images, cost 
volumes can be constructed, and depth estimation and recon‑
struction can be performed using the cost volumes, thereby 
achieving a complete 3D reconstruction process.
2.3 Neural Implicit Surface-Based 3D Reconstruction 

Methods
Neural implicit surface-based 3D reconstruction methods 

(Fig. 3), such as NeuS and nvdiffrec, represent cutting-edge 
technology in the field of 3D reconstruction. These methods, 
which involve learning the implicit representation of object sur‑
faces through neural networks, have made significant advance‑
ments. For instance, NeuS introduces a novel volumetric render‑
ing method by training neural signed distance function (SDF) 

representations, achieving high-quality 3D reconstructions. Nv‑
diffrec adopts the marching tetrahedra algorithm to generate 
higher-quality mesh models. However, neural implicit surface-
based methods still face some challenges, including accurately 
capturing boundary information in complex scenes, handling dy‑
namic objects and camera motion and enhancing their ability to 
process details and textures. In the future, the development of 
these methods may focus on improving the robustness of mod‑
els, expanding their applicability to a wider range of scenarios 
and enhancing their ability to handle details and boundary in‑
formation. These methods have opened up new possibilities in 
the field of 3D reconstruction and hold potential for future re‑
search and applications.

Inspired by the density-based volume rendering algorithm in 
NeRF[8], significant progress has been made in combining neu‑
ral implicit surface representation with volume rendering in 3D 
reconstruction. Neural implicit surface-based 3D reconstruction 
methods learn the implicit representation function of objects 
through neural networks and project the reconstructed models 
to pixel space through volume rendering for training optimiza‑
tion, ultimately achieving high-quality 3D reconstruction.
2.3.1 Neural Implicit Surface Representation

Most neural implicit surface representation methods[13–14] 
model the surface of the target object or scene using two func‑
tions. The first function f: R3 → R converts spatial coordinates 
into signed distances from the point to the object surface, where 
the object’s surface is represented by the zero level set of SDF, 
as shown in Eq. (1).

S = {x ∈ R3|f ( x) = 0} . (1)
The other function c: R3 × S2 → R3 encodes pixel colors re‑

lated to spatial coordinates and viewing directions. Two multi-
layer perceptrons (MLPs) are used to approximate these two 
functions. A new volume rendering method is developed in 
NeuS[14] to train the neural SDF representation. YARIV et al.[13] 
improved the geometric representation and reconstruction in 
neural volume rendering by modeling the volume density as a 

function of geometry, as arbi‑
trary level set extraction of the 
density function may lead to low-
fidelity reconstruction.

To address the presence of nu‑
merous large planar surfaces 
and weakly textured areas in in‑
door scenes, some methods also 
add constraints to the loss func‑
tion to constrain the training re‑
sults and produce smoother sur‑
face representations. For ex‑
ample, MonoSDF[25] uses depth 
and normal maps to constrain ▲Figure 3. Overflow of neural implicit surface-based methods
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the reconstruction results and eliminate noise and discontinui‑
ties in the reconstructed surface through normal consistency.
2.3.2 Surface Reconstruction

The generated neural implicit field describes the density and 
color information of each spatial point in the scene. However, to 
further analyze and visualize the reconstruction results, it is 
necessary to extract the surface geometry information of objects 
from the model and convert the continuous object geometry into 
a discrete voxel representation. Voxel sampling divides the 3D 
space into a set of small cubic units. By inputting the coordi‑
nates of each voxel vertex into an MLP network, the implicit 
function value of the voxel can be obtained, which records 
whether it is inside or outside the object and the distance to the 
object’s surface. Specifically, to begin the surface reconstruc‑
tion process, a three-dimensional grid is first defined within the 
3D space. Typically, this grid takes the form of a cube or voxel 
grid. This grid serves as the basis for point sampling, facilitat‑
ing the computation of the distance from each point to the ob‑
ject’s surface. For each point within this grid, its coordinates 
are fed into a pre-trained neural network. The neural network 
then produces an output representing the distance from the 
point to the object’s surface, which is the output of the neural 
implicit surface function. This distance value is used to deter‑
mine whether each point is located on the object’s surface, 
with points on the surface generally having a distance of zero or 
very close to zero. Consequently, the sign of the distance value 
can be employed to detect points situated on the surface. After 
identifying the surface points, triangles or other polygons can be 
generated by connecting these points, thus reconstructing the 
geometric shape of the object’s surface. By traversing the voxel 
grid and using the implicit function values for interpolation, a 
continuous geometric surface can be generated. For example, 
the Marching Cubes[26] algorithm, based on the idea of isosur‑
face extraction, converts the continuous density field into a dis‑
crete 3D grid representation to obtain the surface geometry of 
the object. Additionally, many studies have employed optimized 
voxelization methods to generate smoother surface representa‑
tions, such as using the marching tetrahedra algorithm[27] in‑
stead of the Marching Cubes[26] algorithm to generate high-
quality mesh models in Nvdiffrec[28].
2.3.3 Texture Rendering

To present more realistic object details and achieve more 
convincing visual effects, existing neural implicit surface-based 
reconstruction techniques use various methods to model the 
color, texture, material, and lighting information on the object’s 
surface. For example, in Nvdiffrec[28], a coordinate-based net‑
work is used to achieve a compact representation of volume tex‑
tures, and environmental lighting segmentation and an approxi‑
mate differential formula are introduced to efficiently recover 
full-frequency lighting. The output triangle mesh, along with 
spatially varying materials and environmental lighting, can be 

directly viewed in any traditional graphics engine. Another ex‑
ample is BakedSDF[29], which bakes the implicit scene repre‑
sentation into a high-quality triangle mesh and then designs a 
view-dependent appearance model based on spherical Gauss‑
ians. This approach generates models that can be used for real-
time view synthesis using accelerated polygon rasterization 
pipelines on commodity hardware.

The implicit texture generation process using xAtlas[30] in‑
volves several steps as follows:

1) Surface data generation: Initially, the 3D model’s surface 
data, including geometric information but excluding texture in‑
formation, is generated based on the implicit surface neural ra‑
diance field.

2) UV mapping: xAtlas[30] is then used to perform UV map‑
ping, which associates texture coordinates with the surface of 
the 3D model. UV mapping is a 2D coordinate system com‑
monly used to map texture images onto the surface of 3D ob‑
jects. In this step, xAtlas calculates UV coordinates for each 
vertex of the triangular mesh, ensuring proper texture mapping 
onto the model.

3) Texture Atlas packing: This step involves packing mul‑
tiple texture images into a single large texture map, which re‑
duces the number of texture switches during rendering and en‑
hances rendering performance. To efficiently allocate texture 
space on the texture image, xAtlas[30] subdivides the triangular 
mesh into multiple regions, each having its own UV space. The 
size and shape of these regions are determined based on surface 
characteristics to ensure even texture allocation.

4) Optimizing texture layout: Once the UV subdivision is 
completed, xAtlas[30] determines the texture layout for each re‑
gion based on their shapes and sizes. This optimization aims to 
minimize empty areas and wasted texture space.

5) Combining texture images: Finally, xAtlas[30] combines the 
texture images from these regions into a single large texture 
map and generates a new UV mapping that correctly maps each 
triangle on the 3D model’s surface to the appropriate texture re‑
gion. This new UV mapping and the merged texture images are 
fine-tuned through trainable parameters to produce the final tex‑
ture map.

In summary, the process involves generating a UV mapping 
that links the 3D model’s surface to a set of texture regions, 
packing multiple texture images into a single large texture map, 
and optimizing the layout of these texture regions to minimize 
waste. This results in a final texture map that can be applied to 
the 3D model for rendering with texture information.
3 Existing Problems

Existing indoor 3D reconstruction techniques based on multi-
view RGB images have achieved good reconstruction results in 
certain situations and within a certain range. However, there 
are still several problems when it comes to reconstructing com‑
plex indoor scenes.

Traditional feature-based 3D reconstruction methods face dif‑
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ficulties in dealing with a large number of textureless areas and 
repetitive texture areas in indoor scenes, resulting in holes and 
noise in the reconstruction results. This limits the application of 
traditional methods in large-scale and complex scenes.

Deep learning-based 3D reconstruction methods typically 
use computationally expensive structures such as 3D CNNs or 
transformers, requiring processing a large amount of image 
data. Generating high-resolution voxel grids also consumes sig‑
nificant storage resources, posing challenges in terms of compu‑
tational resources and storage space. Additionally, complex 
scenes and shape variations require more complex and robust 
deep learning models to capture details and handle changes. 
Furthermore, deep learning-based methods often require a large 
amount of annotated data and model training time, which de‑
mands substantial computational resources and time.

3D reconstruction methods based on neural implicit surface 
representation demonstrate better performance in handling com‑
plex scenes and shape variations. However, in the absence of 
boundary information, such as in large scenes or under low 
lighting conditions, neural implicit surface representation meth‑
ods may struggle to accurately capture the boundary informa‑
tion of the scene, leading to blurry or incomplete reconstruction 
results. Moreover, when there are dynamic objects or camera 
motion in the scene, methods based on neural implicit surface 
representation may be affected by motion blur. The movement 
of dynamic objects can result in the discontinuity of point cloud 
or voxel grid data, which in turn affects the learning of implicit 
surface functions and the accuracy of reconstruction results. 
Furthermore, complex indoor scenes typically contain rich de‑
tails and structures, such as furniture, decorations, and complex 
textures. Methods based on neural implicit surface representa‑
tion may struggle to capture these details when dealing with 
complex scenes, leading to a decrease in the level of reconstruc‑
tion detail.
4 Future Directions

With the rapid development of deep learning and neural net‑
works, 3D reconstruction methods based on neural implicit sur‑
face representation are continuously evolving and improving. 
The future research directions include:

1) Fusion of stereovision and deep learning: Combining tradi‑
tional stereovision methods with deep learning techniques 
implements deep learning models for feature representation and 
matching, improving the reconstruction results for textureless 
and repetitive texture areas. For example, CNNs can be used to 
extract features, followed by the integration of traditional ste‑
reovision matching methods for geometric constraint optimiza‑
tion.

2) Adaptive reconstruction algorithms: Adaptive reconstruc‑
tion algorithms that leverage reinforcement learning methods 
are developed to learn the optimal reconstruction strategies 
through interaction with the environment. The algorithm’s pa‑
rameters and strategies can be adjusted based on the complex‑

ity and characteristics of the scene. This aims to enhance the ro‑
bustness and effectiveness of reconstruction, improving recon‑
struction efficiency for simple scenes while maintaining high-
quality reconstruction results for complex scenes.

3) Fusion of cross-modal data: RGB images are combined 
with other data sources such as depth maps, normal maps and 
metadata to provide a more comprehensive and diverse infor‑
mation source. Consideration can also be given to incorporat‑
ing semantic information into the 3D reconstruction process to 
improve the semantic consistency and accuracy of the recon‑
struction results. Techniques such as semantic segmentation 
and object detection can guide the model to better understand 
and model different objects and scenes during the reconstruc‑
tion process.

4) Generalization capability of models: Current neural im‑
plicit surface reconstruction methods typically require a large 
amount of training data and need to be retrained for different 
objects and scenes. The future research direction is to improve 
the generalization capability of models, enabling them to learn 
and reconstruct different objects and scenes from limited data 
and handle complex situations such as different lighting condi‑
tions, dynamic scenes, and camera motion. It is also necessary 
to construct larger and more diverse indoor scenes.
5 Conclusions

This paper presents three major categories of methods for in‑
door 3D reconstruction using multi-view RGB images: tradi‑
tional methods based on feature matching, deep learning-based 
methods, and methods based on neural implicit surfaces. The 
specific workflows and development status of each method are 
described, and the existing issues of current methods are ana‑
lyzed. Future directions are proposed to guide the future devel‑
opment of 3D reconstruction in indoor scenes.
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Abstract: As the wireless communication network undergoes continuous expansion, the challenges associated with network management and 
optimization are becoming increasingly complex. To address these challenges, the emerging artificial intelligence (AI) and machine learning 
(ML) technologies have been introduced as a powerful solution. They empower wireless networks to operate autonomously, predictively, on-
demand, and with smart functionality, offering a promising resolution to intricate optimization problems. This paper aims to delve into the 
prevalent applications of AI/ML technologies in the optimization of wireless networks. The paper not only provides insights into the current 
landscape but also outlines our vision for the future and considerations regarding the development of an intelligent 6G network.
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1 Introduction

The rapid growth of mobile subscribers and the intro‑
duction of numerous new services have led to the con‑
tinuous expansion of wireless communication net‑
works. In addition, the diversity of network deploy‑

ment and the increase of network parameters in the 5G era 
also make network management quite complicated. The large 
scale and high complexity make it infeasible to achieve the 
best network optimization solution by human engineers. Fortu‑
nately, the advancement of artificial intelligence (AI) and ma‑
chine learning (ML) technologies has provided a powerful solu‑
tion to addressing these challenges. AI and ML technologies 
offer efficient ways to tackle complex problems in wireless 
communication network management. By leveraging these 
technologies, the wireless communication network can be au‑
tonomous, predicted, on-demand and smart operated, and real‑
ize accurate parameter prediction, intelligent resource alloca‑
tion, and green energy savings, thus greatly enhancing the net‑
work performance with less human intervention.

To apply AI/ML to the existing 5G network, the 3rd Genera‑
tion Partnership Project (3GPP) has also begun the study on 

AI/ML topics[1–3]. In terms of the radio access network (RAN), 
the enhancement of data collection for intelligence has been 
studied, including the high-level principles, the functional 
framework, and scenarios (network energy saving, load balanc‑
ing, and mobility optimization) for AI-assisted network optimi‑
zation. The RAN3 work group further discusses the corre‑
sponding normative work in Release-18 to enhance the collec‑
tion of measurement through signaling based on the existing 
next-generation (NG)-RAN interfaces and architecture. In ad‑
dition, the research on the intelligence of air interface is also 
carried out by the RAN1 work group, which studies the life‑
cycle management, scenarios such as channel state informa‑
tion (CSI) feedback enhancements, beam management and po‑
sitioning improvement, evaluations for each use case and po‑
tential impact to the current specification.

This paper presents the popular application of AI/ML tech‑
niques in wireless network optimization and provides our fu‑
ture vision and consideration on a 6G intelligent network. The 
subsequent sections of this paper are outlined as follows. In 
Section 2, we review some achievements in AI/ML assisted 
wireless communication network optimization. Section 3 de‑
scribes the potential implementation of AI/ML based use 
cases over existing network architecture. Finally, future vision 
and consideration are provided in Section 4, followed by the 
conclusion of this paper in Section 5.

This work was supported in part by the National Natural Science Founda⁃
tion of China under Grant No. 62201266, and in part by the Natural Sci⁃
ence Foundation of Jiangsu Province under Grant No. BK20210335.
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2 Applications of AI/ML Techniques in Wire⁃
less Network Optimization
In wireless communication systems, AI/ML algorithms have 

been extensively used for various usage such as traffic load 
prediction, mobility prediction, radio link failure prediction[4], 
positioning[5], and network slicing resource management[6]. 
Various experiments or practices have been carried out to 
show the potential benefits of AI/ML-assisted wireless network 
optimization.
2.1 Network Energy Saving

Energy conservation has always been a global and eternal 
topic in various walks of life. Especially in the mobile commu‑
nication industry, the relentless expansion of mobile communi‑
cation networks to meet the demands of an unprecedented 
surge in mobile subscribers has resulted in a rapid increase in 
energy consumption. To reduce the huge energy consumption 
and achieve a greener mobile communication network, numer‑
ous research projects have been started with different contri‑
bution areas like services, architecture, and intelligence dur‑
ing the past years[7].

Numerous energy-saving strategies, including symbol shut‑
down, carrier shutdown, channel shutdown, deep sleep, and 
symbol aggregation, have been proposed[8]. However, existing 
energy conservation is usually vulnerable due to some poten‑
tial issues such as imprecise traffic prediction, imbalance be‑
tween performance and efficiency, inflexible parameter adjust‑
ment, and localized energy efficiency improvement leading to 
an overall deterioration[1]. AI/ML based energy-saving strate‑
gies can realize accurate load prediction, flexible parameter op‑
timization, service forecasting, and scene identification, to se‑
lect the most suitable shut-down schemes for a certain scenario 
without significantly deteriorating the system performance.

In Ref. [9], the energy-saving performance of strategies in‑
cluding symbol switch-off, channel switch-off, and carrier 
switch-off with the assistance of Auto Regressive Integrated 
Moving Average (ARIMA) is evaluated in real scenarios. The 
results show that the machine learning technique can bring 
the percentage of the switch-off duration per cell up to 176%, 
increase the switch-off duration and 1.24 kWh power saving 
per cell per day without affecting basic key performance indi‑
cators (KPIs), and the total electrical saving per week is in‑
creased by CNY 2 223 compared with the conventional en‑
ergy saving strategies[9]. AI/ML based channel shutdown, 
symbol shutdown and deep sleep are used in the real test in‑
volving 54 active antenna units (AAU) for energy saving, re‑
sulting in a reduction of 23.87% in power consumption and 
an improvement of 23.4% in energy efficiency[10]. Ref. [11] 
illustrates an energy-efficiency optimization algorithm through 
deep reinforcement learning (DRL) by simulation, and shows 
that the DRL-assisted energy-saving algorithm can bring 
about 50 W or 40% power savings compared with the initial 
system. AI-based service awareness, capable of discerning 

variations in the energy efficiency of different service types, is 
integrated with AI-based traffic forecasting for the optimiza‑
tion of energy-saving strategies. This approach results in a 
daily energy saving of 13.7 kWh, with energy saving increas‑
ing by nearly 10%[12].
2.2 Traffic Load Prediction

Traffic prediction plays a pivotal role in network optimiza‑
tion and serves various use cases, including energy conserva‑
tion and mobile load balancing. Traditional models such as 
linear regression and support vector machines (SVM) have 
reached maturity in traffic load prediction. With the quick evo‑
lution of deep learning, increasingly sophisticated algorithms 
are being employed for more accurate predictions. Load pre‑
diction plays a significant role in assisting load balancing as il‑
lustrated in Fig. 1.

Several supervised and unsupervised learning algorithms for 
predicting the resource status on sites are compared in terms of 
accuracy, time consumption, and memory usage by using the 
real-world datasets of the wireless Long-Term Evolution (LTE) 
network, and the results show that the Automated Neural Net 
(ANN) has the highest prediction accuracy about 80%, and the 
SVM and Self-Organizing Maps (SOM) can also provide above 
70% accuracy[13]. Ref. [14] proposes a new type of federated 
learning (FL) mechanism to solve data security and privacy is‑
sues in the commonly-used-centralized training models, and the 
prediction accuracy can reach 86.02%, close to the state-of-the-
art FL models while significantly reducing the communication 
cost. Ref. [15] introduces two models, Ensemble and ResNet, 
for traffic load prediction, and compares their prediction perfor‑
mance in the same scenario with ARIMA and Prophet as the 
baseline. The result states that the prediction accuracy of the 
ensemble model which takes time, space, and historical infor‑
mation into consideration is much higher than ARIMA and 
Prophet. The calculation complexity of ResNet is significantly 
lower than that of baseline models, as it can generate results for 
all cells in a single training session. This characteristic makes 
it particularly suitable for traffic load prediction tasks involving 
large datasets.

▲Figure 1. Benefits to load balancing with assistance of artificial intelli⁃
gence (AI)/machine learning (ML)
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Low resource status Low resource status
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2.3 UE Trajectory Prediction
The ultra-dense network deployment in the 5G mobile com‑

munication system consists of numerous small cells to satisfy 
the requirements of ultra-high reliability, low latency, and 
high data rate. This can lead to more frequent handovers for 
high-mobility UE, thus resulting in problems such as high la‑
tency, throughput reduction, radio link failure (RLF), and 
ping-pong effect. Therefore, mobility optimization is of vital 
importance, and one of the key parts of mobility optimization 
is UE trajectory prediction. Since human mobility is predict‑
able to some extent, it is feasible to analyze user’s mobility 
patterns through their history trajectory information[16], and 
can be enhanced by using machine learning techniques.

Ref. [16] learns the mobility pattern of user equipment (UE) 
from historical trajectories and predicts its future movement 
trends using the Long Short Term Memory (LSTM) structure, 
and the prediction result is used in the proposed intelligent 
dual connectivity mechanism for handover optimization. The 
simulation results demonstrate that, even as cell density in‑
creases, the average handover prediction accuracy for low-
speed users remains high[16]. Ref. [17] proposes multiple fea‑
tures that combine UE history trajectory with the reference sig‑
nal receiving power (RSRP) measurement reports from serving 
and neighbor base stations as input of the sequence-to-
sequence model for next-time location prediction, and intro‑
duces orientation loss function to analyze the direction of move‑
ment. Simulation results show that with RSRP and orientation 
loss function, the average distance error decreases from 48.634 
m to 38.457 m, and the accuracy of predicted connected nodes 
the next time can be up to 98.26%[17]. Ref. [18] compares the 
performance of various models for AI-based mobility predic‑
tion, and Bidirectional Long Short Term Memory (Bi-LSTM)-at‑
tention shows the highest accuracy up to 91.78%, while ANN 
consumes the shortest training time due to its low complexity.
3 Implementation of AI/ML Based Use Cases 

over Network Architecture
The key to integration between AI/ML and wireless net‑

works is to resolve the issue of how to implement the AI/ML 
based use cases over existing network architecture. Existing 
network architecture includes next-generation radio access 
network (NG-RAN) nodes, UE, and core networks, and each 
network entity can be in charge of different functions to sup‑
port AI/ML, e. g., training and inference. Different scenarios 
may call for various deployment methods for AI/ML models.

A framework for RAN intelligence (Fig. 2) has been de‑
scribed in 3GPP TR 37.817[1]. The data collection function col‑
lects different kinds of data for the AI/ML model, such as mea‑
surements from UE or gNBs, predictions or decisions output 
from AI/ML models, and feedback from the actor, and provides 
the input data for training and inference function. Input data 
can be used after the data preparation procedure, such as data 
pre-processing, is performed by the model training function and 

model inference function. The model training function trains, 
validates and tests the AI/ML model, which will be deployed to 
the model inference function after these procedures. The model 
inference function generates predictions or decisions and a 
trained AI/ML model from the model training function. Addi‑
tionally, it offers model performance feedback to monitor and 
optimize model performance. The actor function executes ac‑
tions based on decisions made by the model inference function 
and provides feedback to the data collection.

Some enhancements are needed in the current 5G RAN to 
integrate AI/ML functions. From the perspective of specifica‑
tion, three use cases, i.e., network energy saving, load balanc‑
ing, and mobility optimization, are first considered to be stan‑
dardized for supporting AI/ML functions. For these three AI/
ML based use cases, model training can be located in either 
operation administration and maintenance (OAM) or gNB, 
while the model inference is located in gNB. In the case of 
centralized unit/distributed unit (CU-DU) split RAN architec‑
ture, model training can be located in either OAM or gNB-CU, 
while the model inference is located in gNB-CU.

Fig. 3 shows the general flow chart of an AI-based use case 
with model training at OAM and model inference at gNB. UE 
is currently served by gNB 1, while gNB 2 can be the neigh‑
bouring gNB optionally with an AI/ML model. The OAM col‑
lects the input data needed for model training, including the 
measurement report of UE, input data from serving gNB and 
neighbouring gNB, and performs model training. The trained 
AI/ML model is then deployed/updated into the gNB 1 (this 
step is out of the RAN3 Rel-17 scope) for further training or 
model inference. Based on the local input data from gNB 1 
and other indicated input data from UE and gNB 2, gNB 1 per‑
forms model inference to make decisions or predictions, and 
this output can also be the model performance feedback sent 
to the OAM. The gNB 1 executes the action based on the 
model inference output and provides feedback to OAM for 

▲Figure 2. Functional framework for radio access network (RAN) intel⁃
ligence
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model performance monitoring and training optimization.
Fig. 4 shows the general flow chart of an AI-based use case 

with model training and model inference at gNB. It can be 
seen that the overall procedure is simi‑
lar to the previously introduced flow 
chart. The difference is that since the 
model training and model inference 
are both performed in gNB 1, the in‑
put data for model training and model 
inference and the feedback after the 
action are directly sent to gNB 1.

Across the three AI/ML-based use 
cases, the predicted resource status, 
the predicted number of active UEs, 
predicted radio resource control 
(RRC) numbers and predicted UE tra‑
jectory are considered as types of pre‑
dicted assistance information to be re‑
ported between NG-RAN nodes.

Take predicted resource status in‑
formation as an example. It can be re‑
ported at one time or periodically be‑
tween NG-RAN nodes. The flow 
charts of one-time reporting and peri‑
odic reporting are shown in Figs. 5(a) 
and 5(b). In one-time reporting, the 

requesting node requests the report‑
ing of predictions by sending the 
Data Collection Request message and 
configures the requested prediction 
time (a specific point of time in the 
reasonable future for which the pre‑
diction information is requested) as 
tp. The requested node makes predic‑
tions based on its own AI/ML model 
and reports the successfully initiated 
predictions in the Data Collection Up‑
date message to the requesting node 
for one time at tReport, which is a time 
point ahead of tp. For periodic report‑
ing, the reporting periodicity is also 
configured in the Data Collection Re‑
quest message. The requested predic‑
tions will be reported every TR at 
time points of tReport + N×TR (N = 0, 1, 
2,…), corresponding to the requested 
prediction time of tp + N×TR, until 
the requesting node sends the Data 
Collection Request message to stop 
the report.

Meanwhile, UE performance feed‑
back (including average UE through‑
put DL/UL, average packet delay, and 

average packet loss), measured UE trajectory, and energy cost 
are considered measurements to support AI/ML functions, 
such as model performance evaluation.

AI: artificial intelligence      gNB: gNodeB      ML: machine learning      UE: user equipment
▲ Figure 4. Deployment of AI/ML functionality: model training and model inference at next-
generation radio access network (NG-RAN)

▲Figure 3. Deployment of AI/ML functionality: model training at OAM and model inference at next-
generation radio access network (NG-RAN)

AI: artificial intelligencegNB: gNodeB ML: machine learningOAM: operation administration and maintenance UE: user equipment
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Take the UE performance feedback as an example. It can 
also be reported at one time or periodically, as illustrated in 
Figs. 6(a) and Fig. 6(b). Since the UE performance is the aver‑
age information over a period of time measured at the traffic 
offloaded neighbouring gNB, a new data collection ID, IE, is 
included in the Handover Request message as a trigger indi‑
cation to request the measurement of UE performance at the 
target gNB after the successful handover, while the configura‑
tion of measurement and reporting is still indicated in the 
Data Collection Request message. In one-time reporting, the 
target gNB starts the UE performance measurement collection 
after the successful handover until the measurement collec‑
tion duration expires, and reports the measured UE perfor‑
mance for one time to the source gNB. In periodic reporting, 
for one pair of measurement IDs, the reporting periodicity is 
calculated from the egress of the Data Collection Response 
message, namely, the UE performance feedback is reported 
through the Data Collection Update message every TR at time 
points of tResponse + N×TR, which can effectively avoid the sig‑
naling storm caused by the UE handed over at different times.

With the introduced solutions to supporting AI/ML func‑
tions over the Xn interface between NG-RAN nodes, the RAN 
node can infer future information, aiding operators in optimiz‑
ing their network and enhancing the user experience.
4 Future Vision on AI/ML Assisted Wire⁃

less Network
The development of the 6G network is currently a vigor‑

ously researched topic in both the telecommunications indus‑
try and the academic community. For 6G, there are higher and 

more requirements compared to 5G mobile networks in terms 
of key objectives, such as coverage, speed, latency, capacity, 
AI, integrated sensing and communication (ISAC), and com‑
puting. From our perspective, 6G networks need to achieve 
seamless human-machine and machine-machine interactive 
communications, while humans are at the center of control 
and judgment. Inter-working between humans and machines 
will become more frequent and broader in the future, not only 
for the devices bought by people, such as wearable devices 
and sensing devices, but also for those variant devices in soci‑
ety and industry, e. g., cameras, vehicles, robots, and un‑
manned aerial vehicles (UAVs). Such collaborative intelligent 
interaction can be achieved by AI/ML tools based on the 
amount of data perception, while machine cognition must be 
handled carefully. During human-machine interaction, three 
key points need to be considered: intelligence, energy effi‑
ciency, and security, as illustrated in Fig. 7.

1) Intelligence
In the realm of artificial intelligence, the current focus of 

5G is to treat AI as a tool to assist networks in operations such 
as load balancing, energy efficiency, and mobility optimiza‑
tion. However, with the advent of 6G, the consideration goes 
beyond treating AI/ML merely as a tool. Instead, the focus 
shifts towards deeply integrating AI/ML functionalities into 
the network layer, aiming to achieve native AI.

From now on, artificial intelligence can be divided into data 
intelligence, perception intelligence, cognitive intelligence, 
and autonomous intelligence. Data intelligence refers to the 
ability of computing hardware to analyze and categorize data 
stored, which can be considered the most fundamental level of 

▲Figure 5. Flowcharts of transferring predicted information: (a) one-time reporting; (b) periodic reporting
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intelligence. Perception intelligence means that computing 
units have perceptual capabilities to recognize diverse infor‑
mation, such as videos, images, and sounds. From an imple‑
mentation and security perspective, perception intelligence 
will become an efficient level of intelligence in 6G networks. 
By perceiving and analyzing data from various network ele‑
ments and layers (including communication quality, user expe‑
rience, use case requirements, etc.), it will make a large num‑
ber of human-machine interactions more efficient.

2) Energy efficiency
Energy efficiency is one of the key concerns for operators, 

whether in the current 5G or future 6G networks. For 6G, as 
there will be an introduction of a larger number of terminal de‑
vices and the need to support computing capabilities for AI/
ML functions, the substantial increase in data transmission 
can lead to a significant rise in energy consumption. This in‑
creased energy consumption can adversely affect the sustain‑
ability of 6G networks and result in a considerable number of 
carbon emissions. Therefore, energy-saving efficiency strate‑
gies need to be further developed. This may involve using arti‑
ficial intelligence to predict traffic volume and minimize en‑
ergy consumption or treating energy services as a specific ser‑
vice criterion.

3) Security
6G security aims to ensure that systems are protected 

against unintended and unauthorized access, safeguarding per‑
sonal data and sensitive network information. Enhanced en‑
cryption algorithms can be used to protect the privacy of data 
during transmission and storage. In addition, federated learn‑
ing is leveraged to use the local training and global training 
mechanisms to protect the privacy data from UE. Blockchain 
processes data through decentralization and uses distributed 
data management to protect user privacy.
5 Conclusions

AI/ML-enabled RAN intelligence has the potential to sig‑
nificantly enhance network performance and user experience. 
This paper aims to delve into a comprehensive overview of 

▲Figure 6. Flow charts of transferring UE performance feedback: (a) one-time reporting; (b) periodic reporting

NG-RAN: next-generation radio access network       UE: user equipment

▲ Figure 7. 6G network: inter-working between human and machine 
for sustainability
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achievements in optimizing wireless communication networks 
through the application of AI/ML techniques. Additionally, 
the paper provides an overview of the implementation of AI/
ML based use cases over existing network architecture. The in‑
clusion of this aspect underscores the importance of aligning 
AI/ML advancements with industry standards, ensuring seam‑
less integration and widespread adoption. As computational 
capabilities continue to strengthen, diverse application sce‑
narios emerge, and standardization progresses, the paper an‑
ticipates an escalating role for AI/ML techniques in shaping 
the landscape of 5G and the imminent 6G era. The conver‑
gence of these factors positions AI/ML as a pivotal force, 
poised to drive innovation and efficiency in next-generation 
wireless communication networks.
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1 Introduction

In recent years, the development of quantum computing 
has posed challenges to the security of traditional encryp‑
tion algorithms. The Secure Sockets Layer (SSL)/Trans‑
port Layer Security (TLS) protocol, which is built upon 

these conventional encryption algorithms, facilitates identity 
authentication, data encryption, and message integrity verifica‑
tion. During the handshake phase of the SSL/TLS protocol, the 
client transmits its supported encryption suites to the server. 
The server, based on its configuration, selects a suite that en‑
compasses authentication algorithms, key exchange algo‑
rithms, digest algorithms, and others. These are employed for 
subsequent processes such as identity authentication, key ne‑
gotiation, and encrypted communication. Consequently, if the 
algorithms within the cipher suite harbor known vulnerabili‑
ties such as discrete logarithm and prime factorization prob‑
lems susceptible to the Shor quantum algorithm[1], the cipher 
suite may be insecure, thus imperiling the SSL/TLS protocol 
against potential attacks.

In this paper, we address the aforementioned issues by in‑
corporating quantum key distribution into the SSL/TLS proto‑

col. Quantum keys, as supplementary and preferred sources of 
keys, offer a resilience against quantum attacks. In situations 
where quantum keys are inaccessible, the system seamlessly 
transitions to a post-quantum cipher mode. Post-quantum ci‑
pher algorithms, similarly fortified against quantum attacks, 
optimize and complement the original encryption suites of the 
SSL/TLS protocol. The dynamic switch between quantum keys 
and post-quantum encryption algorithms ensures constant pro‑
tection against quantum attacks, enhancing the system􀆳s secu‑
rity and reliability.

This paper is structured as follows: Section 2 introduces the 
background knowledge of the SSL/TLS protocol, quantum key 
distribution, and post-quantum encryption algorithms. Section 
3 provides an overview of the overall system architecture, de‑
tailing the handshake protocol and cipher suite employed in 
this study. The experimental environment and system modules 
are presented in Section 4. Section 5 conducts testing and 
analysis of the system􀆳s performance with regard to handshake 
latency and post-establishment data throughput. Finally, a 
comprehensive conclusion is made in Section 6.
2 Background

2.1 SSL/TLS Protocol
The SSL and TLS protocols are secure transport protocols This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20221029003.
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that reside between the application layer and the transport 
layer in the TCP/IP protocol stack. The SSL/TLS protocol en‑
compasses two layers of communication. The record protocol 
offers fundamental security services to various higher-level 
protocols and defines the format for data transmission[2]. More‑
over, SSL/TLS establishes three higher-level mechanisms in‑
volving data encryption, identity authentication, and message 
integrity verification, thereby ensuring security and data integ‑
rity during transmission.

The SSL/TLS protocol negotiates cipher suites and keys 
through a handshake process between the client and the 
server. This handshake protocol consists of a series of mes‑
sages exchanged between the client and server, which can be 
categorized into four distinct stages.

The first stage initiates the logical connection and estab‑
lishes relevant security functionalities. It commences with a 
client “hello” message and concludes with a server “hello” 
message. During this stage, the client and server negotiate the 
SSL version for use, session ID, compression methods, and ci‑
pher suites. Random numbers are also exchanged. Cipher 
suites define key exchange algorithms and CipherSpecs, 
which encompass encryption algorithms, MAC algorithms, and 
other pertinent information. Supported key exchange methods 
by the SSL/TLS protocol include Rivest-Shamir-Adleman 
(RSA), fixed Diffie-Hellman (DH), ephemeral DH, and anony‑
mous DH[3].

The second stage pertains to server authentication and key 
exchange. If authentication is required, the server sends its 
certificate at the beginning of this stage. Any agreed-upon key 
exchange, apart from anonymous DH, necessitates this certifi‑
cate message. Subsequently, a server key exchange message is 
sent. This message is not required if RSA key exchange is em‑
ployed, or if the server sends a certificate with fixed DH pa‑
rameters. Additionally, non-anonymous servers can request 
certificates from clients by sending a certificate request mes‑
sage. This stage ends with a server-done message.

In the third stage, client authentication and key exchange 
are initiated by the client􀆳s certificate message. Next, the cli‑
ent sends a client key exchange message to create a premas‑
ter secret between the client and server. The content of this 
message varies based on the key exchange method. The ex‑
changed premaster secret will be used by both parties to de‑
rive a shared master key. CipherSpec parameters are gener‑
ated from the master key using hash techniques. These pa‑
rameters include a client write MAC, a server write MAC, a 
client write key, a server write key, a client write Initializa‑
tion Vector (IV), and a server write IV[4]. Finally, the client 
sends a certificate verification message to validate its certifi‑
cate explicitly.

In the fourth stage, the client sending a change-cipher-
spec message to transfer the pending CipherSpec state to the 
current state. Subsequently, a finished message is sent using 
the new algorithm and key. Finally, the server sends a 

change-cipher-spec message to transfer the pending mes‑
sages to the current CipherSpec, and it also sends its own fin‑
ished message[5].

The record protocol in the SSL/TLS framework is estab‑
lished atop a reliable transport protocol (such as TCP) and pro‑
vides support for fundamental functionalities like data encap‑
sulation, compression, and encryption. One key advantage of 
SSL/TLS lies in its independence from specific application 
layer protocols. Higher-level application layer protocols (e. g., 
HTTP, FTP, Telnet) can seamlessly operate over the SSL/TLS 
protocol[6]. The SSL/TLS protocol completes encryption algo‑
rithm negotiation, communication key establishment, and 
server authentication before the communication between appli‑
cation layer protocols begins. As a result, data transmitted by 
application layer protocols are encrypted, ensuring communi‑
cation confidentiality.
2.2 Quantum Key Distribution

Quantum Key Distribution (QKD) is theoretically proven to 
be unconditionally secure, with its security guaranteed by the 
fundamental principles of quantum mechanics[7]. QKD utilizes 
quantum states to encode and transmit information, providing 
theoretically unconditional secure shared keys for both com‑
municating parties and establishing secure confidential com‑
munication. QKD guarantees the security of point-to-point key 
distribution. The process involves the exchange of quantum 
bits (qubits) between a quantum transmitter and a quantum re‑
ceiver through a quantum channel. They further exchange 
measurement bases through a public channel, perform key sift‑
ing, and subsequently perform error correction. This process 
is designed to detect the presence of potential attackers and 
determine the final session key.

In the process of QKD, pairs of photons with different po‑
larization states are randomly emitted by quantum devices. 
On the receiving side, the photon states sent by the quantum 
devices are measured by randomly selecting measurement 
bases[8]. Based on the polarization state of the emitted photon 
from the quantum device and the orientation of the measure‑
ment basis at the receiving side, the information received is 
determined as either 0 or 1 for each received photon. More‑
over, due to the non-cloneability of quantum states, which 
means they cannot be copied or measured without disrupting 
their state, any attempt at eavesdropping could potentially al‑
ter the quantum states themselves, resulting in a high error 
rate and thus making eavesdropping detectable. Further‑
more, each string of keys is generated randomly, and if inter‑
cepted, the communicating parties can detect it and change 
the password[9], thus rendering quantum keys non-cloneable 
and reliable.

Consequently, the distinct advantage of quantum keys is 
their ability to resist quantum computing attacks, achieved 
through their inherent properties of single quantum indivis‑
ibility and unclonable quantum states[10]. The combination 
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of QKD and the one-time pad enables information-theoretic 
secure encryption, meaning that it remains secure even 
against adversaries with unlimited computational resources. 
QKD 􀆳 s functionality includes symmetric key negotiation and 
generation, which, when combined with symmetric cipher al‑
gorithms, can achieve encryption, decryption, and authentica‑
tion capabilities.
2.3 Post-Quantum Cryptography

Cryptographic algorithms that can resist attacks from quan‑
tum computers are collectively referred to as Post-Quantum 
Cryptography (PQC). These algorithms have been developed 
to tackle security threats posed by the emergence of quantum 
computing[11]. Post-quantum cryptographic algorithms offer 
computation speeds surpassing those of existing public key al‑
gorithms while maintaining the same level of security. They 
can be used to replace existing algorithms and protocols, in‑
cluding public key encryption, key exchange, digital signa‑
tures, and more.

Post-quantum cryptographic algorithms can be categorized 
into four main classes: lattice-based crypto systems, code-
based crypto systems, multivariate crypto systems, and hash-
based cryptosystems. Among these, lattice-based post-
quantum cryptographic algorithms stand out due to their rela‑
tive efficiency, versatility, and ability to be highly parallel‑
ized[12]. They strike a better balance between security, key 
sizes, and computation speed compared to traditional number 
theory-based constructions. In some cases, lattice-based algo‑
rithms can even outperform traditional number theory-based 
cryptographic algorithms in terms of computation speed. 
Among various post-quantum cryptographic algorithms, 
lattice-based ones are more suitable for practical applications 
when considering the same level of security. The security of 
lattice-based post-quantum cryptographic algorithms is based 
on the hardness of solving lattice problems. They achieve 
smaller public and private key sizes, faster computation 
speeds, and can be used to construct various cryptographic 
primitives[13], making them more suitable for real-world appli‑
cations. Compared to number-theory-based cryptographic algo‑
rithms, lattice-based algorithms offer significantly improved 
computation speeds and higher security levels.

On July 5th, 2022, NIST announced a selection of algo‑
rithms for standardization, which includes CRYSTALS-
KYBER for asymmetric encryption and key encapsulation 
mechanisms, CRYSTALS-Dilithium, FALCON, and 
SPHINCS+ for digital signatures. Among them, NIST recom‑
mends the CRYSTALS-Kyber algorithm for general-purpose 
encryption of information exchanged over public networks and 
the other three algorithms for identity authentication. 
CRYSTALS-Kyber is a lattice-based post-quantum crypto‑
graphic algorithm that provides an IND-CCA2 secure key en‑
capsulation mechanism. Its security relies on the difficulty of 
solving the Module Learning With Errors problem on lat‑

tices[14]. The module is an extension of the ideal lattice and 
general lattice, while Module Learning with Errors is an exten‑
sion of Ring Learning with Errors (RLWE). When appropriate 
parameters are chosen, cryptographic schemes constructed 
based on Module Learning with Errors (MLWE) provide a 
good balance between efficiency and security. Therefore, our 
scheme employs the CRYSTALS-Kyber algorithm based on 
MLWE to guarantee strong security. CRYSTALS-Kyber in‑
cludes algorithms for public-private key pair generation, key 
encapsulation, and ciphertext generation. CRYSTALS-Kyber, 
as a public key algorithm, can be used in the key negotiation 
part of the handshake process. It offers the advantages of rela‑
tively small encryption keys, small data exchange volume, and 
fast operation speed while ensuring security. Kyber defines 
three parameter sets: Kyber512, Kyber768, and Kyber1024. 
By utilizing post-quantum cryptographic algorithms like Ky‑
ber for key exchange and negotiation, systems can more effec‑
tively address potential attacks from future quantum comput‑
ing technologies[15].
3 System Architecture

The system framework designed in this paper is depicted in 
Fig. 1. The quantum key storage devices are abstractly repre‑
sented as a Quantum Key Pool (QKP). When the remaining 
quantity of quantum keys in the pool meets the demand, the 
proposed approach utilizes the quantum keys negotiated 
through the QKD system as the session key for the SSL/TLS 
protocol. Subsequently, during the encryption of communica‑
tion data using encryption algorithms, the quantum key serves 

▲Figure 1. SSL/Transport Layer Security (TLS) handshake protocol
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as the symmetric key for encryption. In cases where the quan‑
tity of quantum keys in the pool falls short of the demand, the 
application employs post-quantum cryptographic algorithms to 
optimize and supplement the corresponding cipher suites of 
the original SSL/TLS protocol. This approach enables resis‑
tance against quantum attacks in the post-quantum crypto‑
graphic mode, ensuring quantum security in the entire mode.
3.1 Handshake Protocol

Keys are stored in pairs between any two QKD nodes. The 
key pool is divided into multiple virtual spaces based on the 
source and destination nodes of communication. Keys are 
placed in the corresponding index-numbered key pool based 
on the source and destination node identifiers of communica‑
tion requests. Quantum key distribution devices generate 
quantum keys and their corresponding identifiers, known as 
quantum key identifiers, through quantum key negotiation 
protocols (such as BB84/B92/TF-QKD). These keys and iden‑
tifiers are then stored in the key pool. The key pool performs 
unified authentication and management of quantum keys and 
their corresponding identifiers. Quantum keys are used as 
session keys for SSL/TLS communication, while key identifi‑
ers play a crucial role in obtaining quantum key credentials 
and ensuring consistency during the SSL/TLS handshake pro‑
cess. The handshake procedure in 
the quantum key mode is illustrated 
in Fig. 2.

In the handshake process of the 
quantum key mode, the client initi‑
ates communication by sending an 
encrypted communication request 

“Client Hello” to the server. During 
this process, the client primarily pro‑
vides information such as the sup‑
ported protocol version (e. g., TLS 
1.3), a randomly generated client 
nonce, encryption algorithm suites, 
supported compression methods, and 
other relevant configurations to the 
server. Upon receiving the client􀆳s re‑
quest, the server responds with a 
message “Server Hello” confirming 
the use of the encryption communica‑
tion protocol version (TLS 1.3), a ran‑
domly generated server nonce, con‑
figurations for server encryption algo‑
rithms, and the chosen encryption al‑
gorithm suite. The server encrypts 
the “Server Hello” information using 
its private key and sends it back to 
the client, along with its certificate 
containing the public key. The client 
verifies the server 􀆳 s certificate upon 

receiving the response. If the certificate is not issued by a 
trusted authority, the domain name does not match, or the cer‑
tificate has expired, a warning is displayed to the user, who 
can decide whether to continue communication. If the certifi‑
cate is valid, the client extracts the server’s public key from 
the certificate and decrypts the “Server Hello” message, 
which was encrypted by the server’s private key. Failure to 
decrypt indicates a false “Server Hello” message, resulting in 
the termination of communication.

After the initial authentication, the client sends a request 
for quantum key allocation to the key pool of the quantum 
key distribution device. The key pool sends quantum keys 
and their corresponding key identifiers to the client, provid‑
ing the client with a pair of quantum keys and their identifi‑
ers. The client encrypts the quantum key identifier using a 
premaster secret and sends it to the server. Upon decryption, 
the server obtains the quantum key identifier. Following veri‑
fication of the client’s identity, the server calculates the pre‑
master secret for the current session by combining the previ‑
ously shared random numbers (client nonce and server 
nonce). The server then decrypts the quantum key identifier 
to obtain it. Using the quantum key identifier, the server 
sends a quantum key extraction request to the key pool, 
which responds by sending the corresponding quantum key. 

▲Figure 2. Overall system framework
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The received quantum key undergoes a hash operation, and 
its hash is compared to the hash of the quantum key in the cli‑
ent 􀆳 s message to verify consistency. In case of inconsistency, 
an error message is sent to the server, triggering a quantum 
key retrieval process.

Once the server notifies the successful negotiation of the 
quantum key agreement, both parties send change cipher spec 
notifications to indicate that subsequent message encryption 
will involve the symmetric encryption method agreed upon 
and the quantum key. A handshake completion notification is 
sent, and at this point, both the client and server process the 
quantum key to obtain a compatible format for the session key.

Considering the possibility of quantum devices experienc‑
ing emergencies such as downtime, our system’s key pool fea‑
tures a backup function. Periodically, we securely store and 
backup keys, allowing us to retrieve quantum keys from the 
key pool 􀆳 s backup. If the client and server cannot obtain the 
same quantum key due to key pool asynchrony or an insuffi‑
cient quantity of remaining keys in the pool, we will switch to 
the classic mode of the SSL/TLS protocol using PQC algo‑
rithms. PQC algorithms optimize and supplement the encryp‑
tion cipher suites of the original SSL/TLS protocol. In this con‑
text, a post-quantum cryptographic algorithm, such as 
CRYSTALS-Kyber, is used to modify the existing SSL/TLS 
protocol. The SSL/TLS handshake process using post-quantum 
cryptographic algorithms is illustrated in Fig. 3.

In the handshake procedure of the post-quantum crypto‑
graphic mode, the client initially dispatches a “Client Hello” 
request to initiate encrypted communication with the server. 
In response, the server reciprocates by sending a “Server 
Hello” message back to the client, along with its own certifi‑
cate and static public key (Pub‑
lic_Key_02). Subsequently, the cli‑
ent generates a temporary public-
private key pair (Public_Key_01, Se‑
cret_Key_01) via the Kyber key gen‑
eration algorithm. Utilizing Pub‑
lic_Key_02 provided by the server, 
the client generates a random num‑
ber K1. This number is then sub‑
jected to the Kyber encryption algo‑
rithm, resulting in the ciphertext C1. The client then forwards the tempo‑
rary public key (Public_Key_01) and 
ciphertext C1 to the server. Upon re‑
ceipt of Public_Key_01 and cipher‑
text C1 from the client, the server en‑
crypts the random number K2 using 
Public_Key_01 to derive the cipher‑
text C2. Concurrently, it decrypts ci‑
phertext C1 using its static private 
key to obtain pre master secret K1'. Then, the server sends ciphertext C2 

to the client. Subsequently, the client receives ciphertext C2 from the server and decrypts it using its temporary private key 
(Secret_Key_01) to extract the pre master secret K2'. Then, 
both the server and client perform hash operations on K1' and 
K2' respectively, utilizing the resultant hash value as the ses‑
sion key.

During the handshake process, the generation of public-
private key pairs, encryption and decryption of random num‑
bers are performed using the CRYSTALS-Kyber algorithm. 
Through the Kyber encryption and decryption algorithms, a se‑
cure exchange of random numbers used in the SSL/TLS proto‑
col are accomplished between the client and the server. Due 
to the quantum-resistant properties of the Kyber algorithm, 
this process is impervious to decryption by quantum attacks.

Finally, both the client and server send change cipher spec 
notifications to indicate that subsequent message encryption 
will involve the symmetric encryption method agreed upon 
and the key derived from the post-quantum cryptographic pro‑
cess. A handshake completion notification is sent, marking 
the completion of the handshake process in the post-quantum 
cryptographic mode.
3.2 Encryption Suite

Within the SSL/TLS protocol, the SSL_CIPHER data struc‑
ture is used to describe a cipher suite, which is composed of a 
set of cryptographic algorithms including key exchange, autho‑
rization, communication encryption, and digest algorithms.

During the communication process between a client and a 
server, the client initiates the handshake by sending a “Client 
Hello” packet, containing a list of supported cipher suites. 
Multiple suites can be separated by symbols, such as 

▲Figure 3. Handshake flow in quantum key mode
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TLS_RSA_WITH_AES_128_CBC_SHA(0x002f) and others. 
The server, based on the cipher suite identifiers and their pri‑
ority sent by the client, selects a supported cipher suite and in‑
cludes it in the “Server Hello” response. This agreed cipher 
suite is ultimately used for the session negotiation between the 
two parties.

In the quantum cryptographic mode, the following encryp‑
tion parameters are generated: client MAC, server MAC, cli‑
ent key, server key, client IV, server IV, and pre-master se‑
cret. MAC is used to generate message digests. IV is gener‑
ated only when traditional block cipher encryption is applied 
to application traffic. When secure encryption and authentica‑
tion are used, the size of the required write key and MAC must 
be negotiated during the SSL/TLS protocol handshake.

Each quantum encryption suite must include a key ex‑
change algorithm, a symmetric encryption algorithm, and an 
authentication algorithm, with the key exchange algorithm em‑
ploying a quantum-key-based key negotiation algorithm. The 
server selects a supported cipher suite from the list of avail‑
able cipher suites. If no compatible cipher suite is found, the 
server returns a handshake failure alert message and termi‑
nates the connection. Cipher suites in the quantum cipher 
mode are shown in Table 1.

Each post-quantum encryption suite comprises a key ex‑
change algorithm, symmetric encryption algorithm, and mes‑
sage digest algorithm. The key exchange algorithm in these 
suites employs post-quantum encryption techniques, such as 
CRYSTALS-Kyber. The message digest algorithm is used for 
verifying server signatures and can include Rivest-Shamir-
Adleman (RSA), Digital Signature Standard (DSS), Ellipse 
Curve Cryptography (ECC), or their corresponding variant al‑
gorithms. The server 􀆳 s authentication relies on a robust PKI 
mechanism, encompassing certificate issuance, certificate 
management, and certificate validity verification. Only after 
validating the certificate 􀆳 s legitimacy can the verification of 
the server 􀆳 s own signature take place. Cipher suites in the 
post-quantum cipher mode are shown in Table 2.

4 Experiment

4.1 Experiment Environment
Our experimental setup involves two host machines 

equipped with Core i5-13600 processors, 8 GB of RAM, and 
100 GB of disk storage each. Additionally, we have two quan‑
tum communication devices employing BB84 protocols. The 
length of the quantum key generated by quantum communica‑
tion devices is 256 bit, while the key identifier stored in the 
quantum key pool is 12 bit. The attenuation in the photon 
transmission process and finite-size effects may lead to com‑
munication delays. Therefore, in our experimental conditions, 
the quantum channel distance is set to be short-range (within 
50 km) with a key rate of 20 kbit/s. The experimental testing 
is facilitated using the OpenSSL 1.1.1t toolkit.

The testing environment consists of two host machines: the 
server employs an Ubuntu Server 22.10 operating system, 
while the client is based on a Windows 11 environment. To 
capture and analyze network traffic during testing, we utilize 
the Tshark network capture software.
4.2 Quantum Key Based SSL Communication Module

We leverage the OpenSSL engine mechanism to integrate 
QKD with the SSL/TLS protocol. This engine mechanism en‑
ables third parties to augment OpenSSL with extensions, 
which can be implemented as dynamic libraries dynamically 
loaded into OpenSSL[16]. The engine mechanism seamlessly fa‑
cilitates encryption using software cryptographic libraries or 
hardware encryption devices. By overloading the callback 
functions used for hardware-accelerated DH key exchange, we 
realize the sharing of quantum keys between communicating 
parties. Due to the inability of the DH callback function 
within the engine to distinguish between client and server in‑
vocations, we separately implement two independent engines 
for dynamic loading: one on the client side and the other on 
the server side. This duality serves to adapt QKD to the SSL/
TLS protocol. The callback functions that are overloaded for 
hardware acceleration encompass the following:

1) init(): This function is formerly employed for initializing 
the engine; post-overloading, it initializes the QKD device.

2) generate_key(): This function is used for generating DH 
private keys and computing public keys using negotiated pa‑
rameters; upon overloading, the server utilizes a fixed value as 
the DH private key, invokes QKD_START() to acquire the 
quantum key identifier from the QKD device or USB key as 
the DH public key, which is subsequently transmitted to the 
client.

3) compute_key(): This function is initially employed for 
calculating DH shared keys; post-overloading, the client uti‑
lizes the DH public key received from the server as the quan‑
tum key identifier, passing it as a parameter to QKD_START
(). Following this, both the server and client individually in‑
voke QKD_CONNECT() with the QKD device and input the 

▼Table 1. Cipher suites in quantum cipher mode
Grade

1
2
3
4

Encryption Suite
TLS_QKD_SHA_RSA_WITH_OTP_MD5

TLS_QKD_DHE_DSS_WITH_DES_CBC_UHAH1
TLS_QKD_UHASH1_PSK_WITH_OPT_ UHAH2

TLS_QKD_MD5_DH_RSA_WITH_AES_128_CBC_SHA

▼Table 2. Cipher suites in post-quantum cipher mode
Grade

1
2
3
4

Encryption Suite
TLS_Kyber_SHA_RSA_WITH_OTP_MD5

TLS_Kyber_DHE_DSS_WITH_DES_CBC_UHAH1
TLS_Kyber_UHASH1_PSK_WITH_OPT_ UHAH2

TLS_Kyber_MD5_DH_RSA_WITH_AES_128_CBC_SHA
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quantum key identifier into QKD_
GET_KEY(). This procedure re‑
trieves the corresponding quantum 
key from the QKD device as the DH 
shared key, culminating with a 
QKD_CLOSE() invocation.

The QKD API invocation process 
for both the client and server is de‑
picted in Fig. 4.

During the process of acquiring 
quantum keys using the QKD API on 
both the client and server sides, the 
SSL server initiates the procedure by 
invoking QKD_START() with a null 
value. Consequently, the QKD sys‑
tem returns a new available quantum 
key identifier to the server. This 
identifier is stored by the server and 
then encrypted before being trans‑
mitted to the client. Subsequently, 
the client employs the QKD_START
() function with the key identifier as 
its parameter.

Following these initial steps, both 
the server and client independently 
execute QKD_CONNECT() to estab‑
lish a QKD connection. This connec‑
tion facilitates the exchange of quan‑
tum key identifiers sent by the client 
and server. This step serves to verify 
that the client possesses an identical 
quantum key identifier to that of the server. Ultimately, to con‑
clude the process, both the server and client separately invoke 
QKD_CLOSE() to terminate the QKD connection.
4.3 Post-Quantum Key Based SSL Communication Module

We extend the encryption module by building upon the 
OpenSSL Crypto Library and integrating algorithms from the 
liboqs library. The liboqs library, an open-source C library de‑
signed for post-quantum encryption algorithms, is incorpo‑
rated into the OpenSSL framework as a novel branch. This in‑
tegration allows the post-quantum cryptographic algorithms 
from the liboqs library to complement the existing functional‑
ity of OpenSSL 􀆳 s Crypto Library. As a result, these post-
quantum cryptographic algorithms fortify the SSL/TLS proto‑
col with quantum-resistant capabilities. The communication 
framework of the SSL/TLS protocol, rooted in post-quantum 
cryptographic algorithms, is illustrated in Fig. 5.

When higher-level applications invoke the OpenSSL li‑
brary to facilitate secure encrypted communication via the 
SSL/TLS protocol, they do not directly engage with the low-
level specifics of individual cryptographic algorithms[17]. In‑
stead, these applications interact with the EVP interface pro‑

vided by the OpenSSL library. The EVP module encapsulates 
the intricate details of cryptographic algorithm implementa‑
tions and offers abstract methods and data types to manage 
cryptographic operations. The foundational encryption func‑
tions required for network protocols are realized through the 
libcrypto library. This library encompasses the concrete 
implementations of encryption.

In the context of the SSL/TLS communication module based 
on post-quantum cryptography, digital signature certificates 
are generated by a custom certificate authority (CA). The digi‑
tal signature algorithm utilized is CRYSTALS-Dilithium2. 
These certificates contain their own public key as well as a 
random value, serving the purpose of identity authentication.
5 Results and Analysis

We conducted performance testing on the SSL/TLS commu‑
nication system proposed in this paper. In the tests, the client 
initiates an SSL/TLS connection request to the server. Both 
parties establish a secure and reliable SSL/TLS session 
through the handshake process.

We created an SSL server and an SSL client using the de‑
veloped communication system tools based on OpenSSL. The 

▲Figure 4. Handshake flow of the SSL/TLS protocol employing post-quantum cryptographic algorithms

AES: Advanced Encryption Standard      SSL: Secure Sockets Layer      TLS: Transport Layer Security

SSL client SSL server

Client-hello

Certificate, Public_Key_02

C1, Public_Key_01

C2

K1 C1
Public_Key_02

C2 K'2
Secret_Key_01

C1 K'1
Secret_Key_02

K2 C2
Public_Key_01

(K1, K'2 ) KeyHash (K2, K'1 )Key Hash

Data CipherAES, Key DataCipher AES, KeyApplication data

Public_Key_01
Secret_Key_01

K1

Public_Key_02
Secret_Key_02

K2

112



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

WANG Jigang, LU Yuqian, WEI Liping, JIANG Xinzao, ZHANG Han 

Secure SSL/TLS Communication System Based on Quantum Keys   Research Papers

server dynamically loaded the server-side engine and awaited 
connection requests from SSL clients. Subsequently, the client 
dynamically loaded the client-side engine and initiated an 
SSL connection to the server.

We employed network packet capture software Tshark to 
monitor the interaction between the client and server. This al‑
lowed us to capture encrypted packets and analyze relevant in‑
formation such as packet size and timestamps. Through this 
analysis, we evaluated the system􀆳s performance.

As a point of comparison, we also subjected an SSL/TLS 
communication system using classical cryptographic algo‑
rithms to testing. This comparative approach enabled a quanti‑
tative assessment of the impact of the quantum key applica‑
tion on the performance of the original protocol. The primary 
evaluation metrics encompassed the handshake latency be‑
tween communication parties and the data throughput follow‑
ing the establishment of a secure session between the parties.
5.1 Handshake Delay

We conducted multiple experiments by varying the key ne‑
gotiation method and the key size to measure handshake la‑

tency. Table 3 provides a description 
of the SSL/TLS communication hand‑
shake latency data when employing 
quantum key distribution as the key 
negotiation method.

According to the findings pre‑
sented in Table 3, it is evident that 
when utilizing quantum key distribu‑
tion as the key negotiation method 
for the SSL/TLS protocol, the result‑
ing handshake latency remains con‑
sistently around 16 ms. This value is 
nearly identical to the handshake la‑
tency observed when employing clas‑
sical public key algorithms (4 096 bit 
RSA public keys) as the key negotia‑
tion method.

Furthermore, as indicated by the 
results in Table 3, the handshake la‑
tency of SSL/TLS communication 
generated by classical public key al‑
gorithms increases with larger RSA 

key sizes. To maintain higher security levels, systems or users 
are required to continually escalate the size of the RSA public 
keys they employ. Consequently, in communication environ‑
ments demanding elevated security standards, the disparity in 
handshake latency between utilizing quantum key distribution 
and classical public key algorithms as the key negotiation 
methods for the SSL/TLS protocol will progressively diminish.
5.2 Data Throughput

When both communicating parties employ the AES algo‑
rithm as the encryption method, a higher frequency of key up‑
dates enhances communication security. However, the trade-
off is that a higher frequency of key updates can lead to a de‑
crease in data throughput for the session between the parties.

The TCP throughput of the network used in our tests was 
measured at 985 Mbit/s. In the SSL/TLS protocol, we per‑
formed key negotiations using both quantum key distribution 
technology and classical public key algorithms. For quantum 
key distribution, a key size of 160 B was utilized, while for 
classical public key algorithms, an RSA key size of 1 024 bits 
was used. The data throughput performance under different 
key update frequencies, using these two different key negotia‑
tion methods, is depicted in Fig. 6.

For each transmission of a fixed amount of data by the cli‑
ent (such as 1 MB), a new SSL/TLS session connection is initi‑
ated, leading to an update of the AES key.

From Fig. 6, it becomes evident that when transmitting 
1 MB of data and utilizing quantum key distribution for key 
negotiation, a higher frequency of key updates exerts a notable 
impact on subsequent communication data throughput. How‑
ever, as the key update frequency reaches 100 MB per update, 

▲Figure 5. Process of invoking QKD API for the client-side and server-side
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▼ Table 3. SSL/TLS communication handshake delay under different 
key negotiation methods
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Quantum key distribution
Quantum key distribution

Classical public key algorithm
Classical public key algorithm
Classical public key algorithm
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Quantum key 16 kB
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RSA 2 048 bit
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Handshake Delay/ms
16.2
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15.6
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the difference in data throughput between the two different 
key negotiation methods (quantum key distribution and classi‑
cal public key algorithms) is approximately 3%. When the key 
update frequency further increases to 500 MB per update, the 
impact of quantum key distribution on communication data 
throughput becomes negligible.
5.3 Security Analysis

In the information exchange process of the SSL/TLS commu‑
nication system described in this paper, the use of the un‑
clonability and tamper-resistance of quantum states ensures 
the security of information transmission. Currently, several 
studies[18–20] have shown that combining QKD with PQC can 
enhance a network 􀆳s resilience to potential quantum comput‑
ing attacks. In the quantum key distribution process, the key 
pool stores quantum keys along with key identifiers. These 
identifiers uniquely represent the quantum keys, which the 
SSL/TLS protocol 􀆳 s client and server use to obtain quantum 
keys as session keys from the quantum key distribution de‑
vice. In the designed SSL/TLS communication system based 
on quantum keys, both communication parties transmit en‑
crypted quantum key identifiers during the SSL/TLS hand‑
shake, rather than directly transmitting the quantum keys over 
the channel. Subsequent key consistency checks are then per‑
formed. As a result, attackers cannot eavesdrop on the SSL/
TLS handshake process to steal or tamper with the quantum 
keys being used by both parties. Therefore, the SSL/TLS proto‑
col based on quantum keys exhibits the ability to resist quan‑
tum attacks on the physical level. At the same time, we recog‑

nize that any eavesdropping on the QKD process will alter the 
quantum states, potentially subjecting QKD-based networks to 
distributed denial‑of‑service (DDoS) attacks. In future work, 
we will implement access control measures to prevent DDoS 
attacks targeting the QKD process within the network.

The security of post-quantum cryptographic algorithms re‑
lies on mathematical problems that current quantum comput‑
ing cannot efficiently solve. The kyber768 algorithm used in 
this paper is a lattice-based post-quantum cryptographic algo‑
rithm, and its security hinges on the hardness of the MLWE 
problem on lattices. When appropriate parameters are chosen, 
there are currently no known classical or quantum algorithms 
capable of rapidly solving this problem. Consequently, this al‑
gorithm offers high security against quantum attacks. There‑
fore, the SSL/TLS protocol that integrates post-quantum cryp‑
tography resists quantum attacks on the mathematical level.

In summary, whether utilizing quantum key distribution 
technology or employing post-quantum cryptographic algo‑
rithms for key negotiation, both approaches guarantee 
quantum-resistant security performance for the SSL/TLS com‑
munication process.
6 Conclusions

This paper presents a novel approach that combines quan‑
tum key distribution with post-quantum cryptography in an 
SSL/TLS protocol secure communication system. By dynami‑
cally loading an engine, the integration of key exchange and 
quantum keys within the SSL/TLS protocol is achieved. Addi‑
tionally, post-quantum cryptographic algorithms are embed‑
ded into the cryptographic suite of the SSL/TLS protocol, 
thereby expanding its underlying algorithmic capabilities. 
This extension builds upon the existing SSL/TLS protocol to 
create a quantum-resistant SSL/TLS communication system, ▲ Figure 6. Communication framework diagram of SSL/TLS protocol 

based on post-quantum cipher algorithm
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▲Figure 7. Data throughput under various key update frequencies
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while maintaining transparency to upper-layer applications. 
The significance of this work lies in its potential to advance 
the adoption of quantum technologies within the SSL/TLS pro‑
tocol. Through packet analysis of communication data within 
the test environment, the proposed system demonstrates high 
performance in handshake latency and throughput.
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1 Introduction

In order to enhance the transmission rate of wireless com‑
munications, various multi-antenna technologies have 
been proposed, among which spatial modulation (SM) tech‑
nology[1–2] has garnered widespread attention due to its in‑

novative nature. As a novel digital modulation method, SM 
technology conveys additional information through the On/Off 
states of transmission antennas, achieving an effective balance 
between spectral efficiency and energy efficiency. This ap‑
proach reduces the number of radio-frequency chains, thereby 
decreasing implementation costs, and finds extensive applica‑
tions across various signal domains, such as frequency, time, 
code and angle domains. Recent comprehensive review pa‑
pers[3–4] have thoroughly delineated the fundamental prin‑
ciples, system design variants, and performance enhancement 
strategies of SM, providing crucial insights for understanding 
and advancing this technology. Concurrently, index modulation 
multiple access (IMMA), envisioned as an advanced technique 
for future 6G communications, is considered a novel extension 
of the traditional non-orthogonal multiple access (NOMA). It 
enhances spectral efficiency and energy efficiency and opti‑

mizes system performance and massive connectivity capabili‑
ties. Relevant literature[5–7] has delved deeply into the basic 
principles of IMMA and investigated its potential applications 
in various fields such as vehicular networks, reconfigurable in‑
telligent surface (RIS) -aided networks, cooperative networks, 
and secure networks. Moreover, recent studies[8–9] have ex‑
plored the application of index modulation technology in new 
areas such as green Internet of things (IoT) and dual-hop 
OFDM relay systems, further highlighting its advantages in im‑
proving communication efficiency and performance. These de‑
velopments not only underscore the significance of index modu‑
lation technology in modern wireless communication, but also 
pave new paths and provide perspectives for its future evolution.

Building on this progress, differential spatial modulation 
(DSM), an important advancement in spatial modulation tech‑
niques, has emerged to address challenges in high-speed chan‑
nel streaming and complex channel estimation in SM[10]. DSM 
introduces differential modulation in the time domain[11], re‑
taining the benefit of SM’s single transmit antenna activation 
per time slot while effectively avoiding channel estimation[12]. 
In a DSM system, the focus is on differential mapping coding 
at the transmitter[13] and demodulation at the receiver[14], with 
current research primarily directed towards mapping algo‑
rithms for antenna activation sequences and the development 
of efficient detection algorithms at the receiver[15–17]. As the 
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number of transmit streams increases with the antennas and 
modulation sequences, the performance of the DSM system is 
impacted. To this end, a differential spatial modulation detec‑
tor with low complexity has been proposed[18], and algebraic 
differential spatial modulation has been explored[19]. A new 
generalized DSM scheme improving data transmission rates 
through symbol interleaving techniques is introduced in Ref. 
[20]. For high mobility scenarios, a low-complexity detector 
that enhances performance in fast fading channels is pro‑
posed[21], alongside a reordered amplitude phase-shift keying-
assisted DSM scheme and a low-complexity detection algo‑
rithm[22], significantly improving performance under fast fad‑
ing conditions. Differing from previous studies, this paper fo‑
cuses on the mapping algorithm of DSM[23], elaborating on the 
design of the activation sequence for the look-up table order 
(LUTO) and permutation method (PM) and further designing a 
mapping table for LUTO when the number of transmit anten‑
nas is large. Our simulation validates that, in terms of the bit 
error rate (BER), PM slightly outperforms LUTO, with the ex‑
tended PM algorithm showing a slight improvement in system 
performance compared to existing literature[16]. Depending on 
system requirements, different mapping algorithms can be se‑
lected in practical applications.

The remainder of this paper is organized as follows. In Sec‑
tion 2, a brief review of a DSM system model is presented. Two 
mapping algorithms are described in Section 3 and complexity 
analysis is provided in Section 4. In Section 5, we present the 
simulation results. The conclusion is given in Section 6.

Notations are as follows: (⋅)T and Tr(⋅) denote the transpose 
and trace of the matrix, respectively; Re{⋅} represents the real 
component of the argument; the complex number field is de‑
noted with C.
2 System Model

Consider a fundamental band DSM system with NT transmit 
antennas and NR receive antennas. At the transmitter, the in‑
formation bits are divided into each of log2(NT!) +
NT log2 ( M ) bits in a transmit block[4] and are transmitted on 
NT time slots, where M denotes the modulation order. Note 
that in the DSM system, the transmitting antennas and the 
length of a transmitted block is NT. At the time of transmission 
duration T, the transmission matrix ST ∈ CNT × NT is
ST = ST - 1XT , (1)

where XT ∈ CNT × NT is the message matrices. Let HT ∈ CNR × NT 
represent the channel matrix. Then the received signal matrix 
YT ∈ CNR × NT can be expressed as
YT = HTST + NT . (2)
Assuming that the channel is a flat Rayleigh fading chan‑

nel, we consider the channel is invariant between two consecu‑

tive transmissions[6], and then we have HT = HT - 1. Therefore, 
Eq. (2) can be rewritten as
YT = YT - 1XT - NT - 1XT + NT . (3)
The estimation of XT based on the maximum likelihood 

(ML) rule can be expressed as
X̂T = argmin

∀X ∈ RM

 YT - YT - 1XT

2
F. (4)

Thus, the optimal detector can be derived as
X̂T = argmax

∀X ∈ RM

Tr{Re{Y H
T YT - 1XT}}, (5)

where RM denotes the set consisting of all effective information 
matrices. At last, the information bits are recovered by de-
mapping the estimated antenna activation order. In the follow‑
ing, the mapping algorithms will be formulated.
3 Mapping Algorithms

3.1 LUTO
The LUTO algorithm is an efficient mapping method for 

matching data symbols to antenna combinations. Specifically, 
the antenna indices are divided into groups; each group con‑
tains several antenna indices, and each bit is used to select a 
group. The antenna indices within each group are arranged in 
a certain order, and the order among different groups can be 
customized as needed. To summarize, the implementation 
steps of the algorithm are as follows:

Step 1: Predefine an antenna combination mapping table 
corresponding to each data symbol;

Step 2: Convert the entered data symbols to the desired an‑
tenna combination;

Step 3: Map the antenna combinations and transmit the 
data symbols.

The signal matrix ST + 1 is calculated by Eq. (1). Examples 
of binary phase shift keying (BPSK) and differential transmis‑
sion processes with NT=3 are shown in Table 1.

Table 2 shows the mapping table for the LUTO algorithm 
when NT=3. For further study, the matrix of all signals sent by 
the system is shown in Table 3 when the input bit stream is 00 
with BPSK modulation. Normally, the number of table rows is 
2log2( )NT! , and the total number of the mapping schemes gener‑
ated is NT!. Therefore, part of mapping scheme would be 
dropped. The formula for discarding the number of mapping 
schemes can be expressed as

L = NT! - 2log2( )NT! . (6)
The table column is related to the modulation order, which 

is determined by the following steps.
Step 1: Generate the value of the bits to be entered;
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Step 2: Derive the maximum binary number from the 0/1 bit 
sequence based on the input bit value;

Step 3: Convert the maximum binary number to a decimal 
number;

Step 4: Add one to the resulting decimal number to deter‑
mine the size of the table column.

As shown in Tables 4 and 5, the antenna activation se‑
quence is given when NT = 4 and NT = 5. When NT = 4, there 
are NT! = 4! = 24 antenna activation sequences. From Eq. (6), 
it can be seen that among the 24 antenna activation orders, 
there will be eight antenna selection options not selected. The 
last eight of all schemes are generally discarded. The selected 
mapping scheme is represented by the set D =
{D0, D1,⋯, D15}={(1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,
2,3), (1,4,3,2), (2,1,3,4), (2,1,4,3), (2,3,1,4), (2,3,4,1), (2,4,1,
3), (2,4,3,1), (3,1,2,4), (3,1,4,2), (3,2,1,4), (3,2,4,1)}. Based on 
the formula NT log2 ( M ) =4 log2 (2) =4, a four-bit sequence is 
obtained. Converting the largest sequence 1111 to decimal 
and adding one yields a table with 16 columns. Define that U 
represents the full modulation symbol mapping scheme. Then, 
a permutation combination is obtained as U= {(-1,-1,-1,-1), 
(-1,-1,-1,+1), (-1,-1,+1,-1), (-1,+1,-1,-1), (+1,-1,-1,-1), 
(-1,-1,+1,+1), (-1,+1,-1,+1), (+1,-1,-1,+1), (-1,+1,+1,+1), 
(+1,+1,+1,+1), (+1,+1,+1,-1), (+1,+1,-1,+1), (+1,-1,+1,+1), 
(+1, +1, -1, -1), (+1, -1, +1, -1), (+1, -1, -1, -1)}. Set D =
{D 0, D 1,⋯, D 63} =(1,2,3,4,5), (1,2,3,5,4), (1,2,4,3,5), (1,2,4,5,

3), (1,2,5,3,4,), (1,2,5,4,3), (1,3,2,4,5), (1,3,2,5,4), (1,3,4,2,5), 
(1,3,4,5,2), (1,3,5,2,4), (1,3,5,4,2), (1,4,2,3,5), (1,4,2,5,3), (1,4,
3,2,5), (1,4,3,5,2), (1,4,5,2,3), (1,4,5,3,2), (1,5,2,3,4), (1,5,2,4,
3), (1,5,3,2,4), (1,5,3,4,2), (1,5,4,2,3), (1,5,4,3,2), (2,1,3,4,5), 
(2,1,3,4,5), (2,1,3,5,4), (2,1,4,3,5), (2,1,4,5,3), (2,1,5,3,4), (2,1,
5,4,3), (2,3,1,4,5), (2,3,1,5,4), (2,3,4,1,5), (2,3,4,5,1), (2,3,5,1,
4), (2,3,5,4,1), (2,4,1,3,5), (2,4,1,5,3), (2,4,3,1,5), (2,4,3,5,1), 
(2,4,5,1,3), (2,4,5,3,1), (2,5,1,3,4), (2,5,1,4,3), (2,5,3,1,4), (2,5,
3,4,1), (2,5,4,1,3), (2,5,4,3,1), (3,1,2,4,5), (3,1,2,5,4), (3,1,4,2,
5), (3,1,4,5,2), (3,1,5,4,2), (3,1,5,2,4), (3,2,1,4,5), (3,2,1,5,4), 
(3,2,4,1,5), (3,2,4,5,1), (3,2,5,2,4), (3,2,5,4,1), (3,4,2,1,5), ( 3,4,
2,5,1), (3,4,5,1,2)}.

From Eq. (6), it can be seen that by bringing NT = 5 into 
5! - 2log2 (5!) = 56, there are 56 antenna activation sequences 
that will not be selected. Set U is arranged in the same way as 
NT = 4. For NT = 4, 5, each information block carries 8 and 
11 data bits in the BPSK scheme of LUTO, respectively. It can 
be seen that as NT and M increase, the transmission efficiency 

▼Table 1. Differential transmission in differential spatial modulation (DSM) with binary phase shift keying (BPSK) modulation and NT = 3
Index t

Time interval
Input bit

Map to Xt

Actual
transmitted signal matrix S t

0
0, 1, 2

No information sent

No information sent

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú+1
+1

+1

1
3, 4, 5
01010

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
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ú-1
-1

+1
é
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10100
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▼Table 2. Mapping table of LUTO algorithm when NT =  3

Input Bitstream

00

01

10

11

Antenna Activation 
Sequence

(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

Block of Information to Send
é

ë
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▼ Table 3. Matrix of all signals sent with binary phase shift keying 
(BPSK) modulation and NT = 3 when input bit D is 00

Input 
Bits

00000

00001

00010

00011

00100

00101

00110

00111

Time Interval 1
Antenna 

Index

1

1

1

1

1

1

1

1

Symbol

-1

-1

-1

-1

+1

+1

+1

+1

Time Interval 2
Antenna 

Index

2

2

2

2

2

2

2

2

Symbol

-1

-1

+1

+1

+1

+1

-1

-1

Time Interval 3
Antenna 

Index

3

3

3

3

3

3

3

3

Symbol

-1

+1
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+1

+1
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+1

-1

Transmitted 
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é
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increases. The table size is 16×16=256 when NT = 4. When 
NT = 5, the table size is 32×64=2 048. As the transmitting 
antennas increase by one, the size of the table increases by 
1 792 cells. Specifically, the size of the table increases expo‑
nentially with the transmitting antennas.
3.2 Permutation Method

From the previous subsection, it can be seen that the LUTO 
is not applicable to the case where the number of transmitting 
antennas is large. Thus, PM is introduced. This method forms 
a point-to-point mapping by permuting the order of NR num‑
bers. First, an integer m is mapped into a sequence, a(m ) =
(a(m )1 ,⋯, a (m )

N ), which is a set of permutations {1,⋯, NR}. For 
NR, m ∈ [ ]0, NR! - 1  can be represented as a sequence a(m ) of 
length NR. In short, the algorithm is implemented as follows.

Step 1: The input sequence is converted to an integer m.
Step 2: Integer m is converted to the sequence bm =

(bm1 ,…, bm
N1 ), and the conversion is shown as

m = bm1 (NR - 1) ! + ⋯ + bm
NT

0!. (7)

Take the largest bm1  satisfying bm1 (N1 - 1) ≤ n1 , and con‑
tinue to find bm2  satisfying bm2 (NT - 2)! ≤ m - bm1 (NT - 1) !. 
And then all the bm elements are computed in turn.

Step 3: the factorial sequence bm is mapped into the arrange‑
ment a(m ). Here Θ = (1, 2,…, NR ) is defined as an ordered 
list, its first element index is 0, and the formula for converting 
bm to a(m ) is shown as

am
i1 ≤ i ≤ NT

= Θbm
i , (8)

so that the element Θh(m ) will be removed from list 1, and then 
each element of a(m ) is obtained in a recursive way.
4 Complexity Analysis

The experimental platform utilizes the Windows 10 operat‑
ing system, the programming environment is MATLAB 2016, 
and the CPU employed is an Intel Core i9-13900. Specifically, 
these configurations are detailed in Table 6.

Table 7 compares the program running times of the PM al‑

▼Table 4. All the signal schemes of Look-Up Table Order (LUTO) with binary phase shift keying (BPSK) modulation and NT = 4

D

D0
D1
D2
…

D6
D7
…

D13
D14
D15

U

U0
00000000
00010000
00100000

…

01100000
01110000

…

11000000
11010000
11110000

U1
00000001
00010001
00100001

…

01100001
01110001

…

11000001
11010001
11110001

U2
00000010
00010010
00100010

…

01100010
01110010

…

11000010
11010010
11110010

U3
00000011
00010011
00100011

…

01100011
01110011

…

11000011
11010011
11110011

…

…

…

…

…

…

…

…

…

…

U6
00000110
00010110
00100110

…

01100110
01110110

…

11000110
11010110
11110110

U7
00000111
00010111
00100111

…

01100111
01110111

…

11000111
11010111
11110111

…

…

…

…

…

…

…

…

…

…

U13
00001101
00011101
00101101

…

01101101
01111101

…

11001101
11011101
11111101

U14
00001110
00011110
00101110

…

01101110
01111110

…

11001110
11011110
11111110

U15
00001111
00011111
00101111

…

01101111
01111111

…

11001111
11011111
11111111

▼Table 5. All the signal schemes of Look-Up Table Order (LUTO) with binary phase shift keying (BPSK) modulation and NT = 5

D

D0
D1
D2
…

D14
D15
…

D30
D31
…

D61
D62
D63

U

U0
00000000000
00000100000
00001000000

…

00111000000
00111100000

…

01111000000
01111100000

…

11110100000
11111000000
11111100000

U1
00000000001
00000100001
00001000001

…

00111000001
00111100001

…

01111000001
01111100001

…

11110100001
11111000001
11111100001

U2
00000000010
00000100010
00001000010

…

00111000010
00111100010

…

01111000010
01111100010

…

11110100010
11111000010
11111100010

…

…

…

…

…

…

…

…

…

…

…

…

…

U14
00000001110
00000101110
00001001110

…

00111001110
00111101110

…

01111001110
01111101110

…

11110101110
11111001110
11111101110

U15
00000001111
00000101111
00001001111

…

00111001111
00111101111

…

01111001111
01111101111

…

11110101111
11111001111
11111101111

…

…

…

…

…

…

…

…

…

…

…

…

…

U29
00000011101
00000111101
00001011101

…

00111011101
00111111101

…

01111011101
01111111101

…

11110111101
11111011101
11111111101

U30
00000011110
00000111110
00001011110

…

00111011110
00111111110

…

01111011110
01111111110

…

11110111110
11111011110
11111111110

U31
00000011111
00000111111
00001111111

…

00111011111
00111111111

…

01111011111
01111111111

…

11110111111
11111011111
11111111111
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gorithm and the LUTO algorithm under different conditions. 
From the table, it is evident that the LUTO algorithm outper‑
forms the PM algorithm in terms of running time. This advan‑
tage becomes more pronounced as the number of antennas and 
the level of modulation order increase. This is because when 
the number of transmitting antennas is small, the LUTO algo‑
rithm does not incur any additional time complexity. However, 
as the number of antennas grows, the space complexity re‑
quired by the LUTO algorithm increases exponentially. The 
PM algorithm, which converts the input bit stream into a sig‑
nal matrix without using lookup tables, significantly reduces 
spatial complexity.

5 Simulation Results and Discussion
In this section, we simulate and evaluate the BER perfor‑

mance of the DSM. The quasi-static Rayleigh flat fading chan‑
nel is used in the experiments.

Fig. 1 gives the theoretical and simulation results of the 
LUTO for BPSK, QPSK and 8PSK modulation in DSM systems. 
It shows the performance of the DSM system when NT = 4 and 
NR=4. It can be seen that the higher the order of symbol modu‑
lation, the higher the data rate of the DSM system transmits.

Fig. 2 gives the comparative results of BER performance of 
DSM with NT = 4, 5 and NR=1, 2, 3, 4, 5 for PM and LUTO un‑
der BPSK modulation. At BER=10−1, it can be seen that the 
SNR gain of the PM is slightly better than that of the LUTO for 
NR = 1,NT = 4 and NT = 5. As the number of receiving antennas 
increases, the SNR gain of the PM gradually increases. The 
simulations show that the system performance is affected by the 
number of transmitting antennas. As the transmitting antenna 
number increases, the diversity gain increases. 

Fig. 3 gives the BER performance of PM and LUTO in DSM 
with different modulations for NT = 3, 4, 5,  NR = 3. When NT =
4, there is roughly a 5.9 dB SNR loss at BER=10-3 for 8PSK com‑
pared to QPSK modulation. When NT = 5, there is roughly 2.4 dB 
SNR loss for QPSK modulation compared to BPSK modulation at 
BER = 10-3.

▼Table 7. Performance test results

Test Items

PM BPSK NT =3 NR = 1
PM BPSK NT =3 NR = 2
PM BPSK NT =3 NR = 3
PM QPSK NT =3 NR = 1
PM QPSK NT =3 NR = 2
PM QPSK NT =3 NR = 3
PM 8PSK NT =3 NR = 1
PM 8PSK NT =3 NR = 2
PM 8PSK NT =3 NR = 3
PM BPSK NT =4 NR = 1
PM BPSK NT =4 NR = 2
PM BPSK NT =4 NR = 3
PM BPSK NT =4 NR = 4
PM QPSK NT =4 NR = 1
PM 8PSK NT =4 NR = 1
PM BPSK NT =5 NR = 1
PM QPSK NT =5 NR = 1
PM 8PSK NT =5 NR = 1

Program Run‑
ning Time/s

6.76
112.95
213.68
15.01

363.52
816.58
44.54

370.16
1 969.85

24.26
472.79
962.76

1 145.05
249.45

1 323.63
127.07

1 981.00
56 551.78

Test Items

LUTO BPSK NT = 3 NR = 1
LUTO BPSK NT = 3 NR = 2
LUTO BPSK NT = 3 NR = 3
LUTO QPSK NT = 3 NR = 1
LUTO QPSK NT = 3 NR = 2
LUTO QPSK NT = 3 NR = 3
LUTO 8PSK NT = 3 NR = 1
LUTO 8PSK NT = 3 NR = 2
LUTO 8PSK NT = 3 NR = 3
LUTO BPSK NT = 3 NR = 1
LUTO BPSK NT = 4 NR = 2
LUTO BPSK NT = 4 NR = 3
LUTO BPSK NT = 4 NR = 4
LUTO QPSK NT = 4 NR = 1
LUTO 8PSK NT = 4 NR = 1
LUTO BPSK NT = 5 NR = 1
LUTO QPSK NT = 5 NR = 1
LUTO 8PSK NT = 5 NR = 1

Program 
Running 
Time/s
4.47

30.45
67.37
5.47

46.82
89.67
11.59
41.83

375.57
20.51

249.37
334.52
481.76
173.50
625.83
96.36

896.64
15 637.95

8PSK: 8 Phase shift keying 
BPSK: binary phase shift keying 
LUTO: Look-Up Table Order 

PM: Permutation Method 
QPSK: quadrature phase shift keying

▲Figure 1. Simulation and theoretical results of Look-Up Table Order 
(LUTO) with NT = 4 and NR = 4

▼Table 6. Configuration of the test host
CPU Type

Core i9-13900
Core Count

24
Thread Count

32
Core Types

Alder Lake (12-th generation)
Performance-Core Frequency

2.00 GHz
RAM
32 GB

8PSK: 8 Phase shift keying 
BPSK: binary phase shift keying 

QPSK: quadrature phase shift keying 
SNR: signal-to-noise ratio

SNR/dB
0   3   6   9  12 15 18 21 24
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 err

or r
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BPSK theory
QPSK practical
QPSK theory
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8PSK theory

100
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10−3
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6 Conclusions
In this paper, the design of DSM’s mapping algorithms, 

LUTO and PM, particularly when used with a high number of 
antennas, is further expanded upon. A detailed description 

and performance analysis of these two mapping algorithms are 
presented. Simulation results show that the PM algorithm is 
slightly better than the LUTO algorithm in terms of BER, al‑
though its implementation is more complicated. The LUTO al‑
gorithm, on the other hand, is relatively simple but requires 
additional lookup table storage space. The selection of the ap‑
propriate method should be based on the specific situation.
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